The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 66

80. When is chemotherapy necessary for mast cell disease?

  • For mastocytosis patients, chemotherapy is used for patients with systemic mastocytosis in whom the disease is malignant (aggressive systemic mastocytosis or mast cell leukemia) or seems to be progressing towards a cancerous form of the disease (smoldering systemic mastocytosis). There are very clear cut guidelines for this. Interferon and chemotherapy are used when a patient has smoldering mastocytosis with increasing mast cell counts; aggressive systemic mastocytosis; or mast cell leukemia, in order to kill off mast cells to slow disease progression and extend a patient’s lifespan.
  • A patient who already meets the criteria for systemic mastocytosis, who has two or more B findings, is considered to have smoldering systemic mastocytosis. SSM is a transition state between indolent SM, which has a normal lifespan, and malignant forms of mast cell disease, including ASM and MCL.
  • Having two or more of the following gets you a diagnosis of SSM: mast cell aggregates that take up 30% or more of cells in a bone marrow biopsy, and/or serum tryptase over 200 ng/mL; bone marrow with too many cells in it overall, without evidence of MDS or a myeloproliferative neoplastic disease; or organ swelling that has not yet affected organ function (swelling of the liver without ascites, spleen swelling enough that it can felt by palpation, lymph nodes swollen to 2 cm or larger).
  • Patients with SSM are watched to see if their body is making lots of mast cells quickly, or if their organs are feeling the strain of too many mast cells. One of the way they check this is to see how quickly their tryptase level increases. If their provider feels that their disease is progressing, they receive chemo or interferon to try and knock the disease down enough that they don’t reach the criteria for ASM.
  • Patients are diagnosed with ASM if they meet the criteria for SM and any of the following criteria: the body not making enough blood cells, cytopenia (absolute neutrophil count below 1000/ul, hemoglobin below 10g/dl, or platelets below 100000/ul); swelling of the liver along with free fluid in the abdomen (ascites), elevated liver enzymes, or portal hypertension; swelling of the spleen along with decreased blood cells due to damage in the spleen, excessive production of blood cells by the bone marrow to compensate, and likely resolution if the spleen is removed; malabsorption in the GI tract causing low protein in the blood (albumin) and weight loss; and severe bone dysfunction, causing a series of bone breaks and large osteolytic lesions from mastocytosis.
  • ASM patients are put on chemotherapy or interferon, usually continuously, unless there is evidence that they have killed off enough mast cells to have a less dangerous disease category.
  • Mast cell leukemia patients are on chemotherapy continuously.
  • There is no described use for chemo in cutaneous mastocytosis.
  • There are situations where patients with other disease categories (ISM, MMAS, MCAS) are put on chemo drugs to try and manage symptoms or shock episodes after all other therapies have failed. While this has been mentioned in literature, there have been no studies on it.
  • Chemo drugs should be used as a last resort. They can have significant side effects and complications that cannot always be remedied by stopping the treatment.
  • Please note that while newer, targeted chemos have become more common, they are in fact chemotherapy and carry significant risks despite being more tailored, including the potential for organ damage or failure.

For additional reading, please visit the following posts:

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)

The Provider Primer Series: Natural history of SM-AHD, MCL, MCS 

The Provider Primer Series: Mast cell activation syndrome (MCAS)

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 65

79. Do probiotics help GI symptoms from mast cell disease?

  • Some people may not be aware of this, but my first science love was microbiology. I love bacteria. They are my teeny little super guys. Mostly because they make the world go round. <3
  • Yes, probiotics help symptoms from mast cell disease.
  • Your body is populated with millions and millions of microbes in just about every place where your body comes into contact with the outside world. This is mostly skin, GI tract, GU tract, and upper respiratory tract.
  • This is an example of symbiosis: the science term for “everybody wins.” Microbes get a steady source of food and protection from the outside world by living attached to some part of us. In return, they help us to break down molecules, make vitamins for us, and help protect us from infections by taking up all the available microbe real estate. If there’s already friendly bacteria (or yeast) living in every available place where microbes could attach to us, that helps to protect us from not so friendly microbes who need a place to latch on.
  • Antibiotics and antimicrobials are in tons of over the counter of products. We are in an age where antibiotics and antimycotics are being used more than ever, often in situations where they can’t even provide benefit.
  • These have the effect of killing off all the helpful microbes, leaving us in a situation where the ones that are left are the most resistant to treatment. This is a huge problem for a number of reasons, the biggest one being the genesis of super bugs, antibiotic resistant organisms that we can’t kill.
  • But there’s another big reason: when you kill off helpful bacteria, it affects our day to day bodily functions. Our bodies have evolved to have this symbiotic relationship with these organisms for millennia. When we kill all those little super guys off, our body is open to infections and situations that cause inflammation.
  • The population of microbes that normally lives happily inside our healthy bodies is called our commensal. If it’s in the GI tract, it’s called the GI commensal.
  • We know for sure that food allergies is related at least partially to changes in the GI commensal.
  • There are a number of experiments that show that if you take the GI commensal out of a healthy mouse and transplant it into a food allergic mouse, that mouse is no longer food allergic. We also know that if you take the GI commensal out of a food allergic mouse and transplant it into a healthy mouse, now you have two food allergic mice.
  • Probiotics contain microbes that you can use to replace the good ones that have been killed off. Mast cell patients, and patients with other inflammatory GI diseases, report a lot of benefit with using probiotics. Mast cell patients have to be careful and need to be sure to look up the ingredients of every probiotic they try, as many of them contain triggers, like lactose. VSL3 often works pretty well in people who are reactive. Culturelle is used by lots of patients. It depends on a lot. Your mileage may vary.
  • People with central lines should use caution and always be sure to wash hands and sterilize surfaces between taking probiotics and using their lines. These organisms are not supposed to be introduced to the bloodstream and could potentially cause infections, especially in people with depressed immunity.
  • I would to give a shout out to MastAttack admin, Pari, who is the most relentless advocate for probiotics I have ever seen. She cares more about your use of probiotics than I care about most things.

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 64

78. Are vaccines contraindicated for people with mast cell disease?

  • What I describe here is a summary of the current state of expert recommendations on this topic. These are not the personal opinions of Lisa Klimas.
  • Generally, vaccines are not contraindicated based solely upon having mast cell disease.
  • The big reason for this is that we know for sure that infections are mast cell activating, in addition to the array of other issues caused by having a condition serious enough to require vaccination.
  • The idea is that if you have a mast cell reaction to a vaccine, it may still grant enough protection against a specific condition, or cross coverage for related conditions, that it may be worth it. Of course, whether or not this is the case depends on a LOT of factors.
  • Vaccination will cause some level of mast cell activation in everyone, mast cell patient or otherwise. This is part of the immune response a person generates that gives them immunity from the vaccine. There is no confusion about whether or not vaccines cause mast cell activation. They do. Every time.
  • It is my experience that the patients who react worst to vaccination are patients with mast cell activation syndrome rather than those with systemic or cutaneous mastocytosis. This is my view from 10,000 feet. There are, of course, exceptions.
  • It is also my experience that the patients who react worst to vaccination often do so because they have another condition where vaccination is contraindicated, like a metabolic disorder. Additionally, I find that many of those patients also have primary immunodeficiencies, meaning they may not be able to generate a vaccine response at all, therefore making vaccination a pointless endeavor for those particular people.
  • So there are some mast cell patients who should not receive vaccines. This is not, usually, because of their mast cell disease. For most of my mast cell patienthood, I have been pretty reactive. I am fully vaccinated and continue to receive vaccines as needed.
  • Mast cell patients should be aware that the normal premedication for procedures has to be modified for vaccination. Specifically, you can’t use systemic corticosteroids for two weeks prior to vaccination in order for the vaccination to be effective. (This excludes patients taking the dose equivalent of 6 mg prednisone or less daily.) This means that antihistamines are the primary method of premedication for vaccination.
  • (Author’s note: I have gotten lots of questions about corticosteroids and vaccination. Corticosteroids are immunosuppressive so they suppress your body’s ability to generate immunity to anything, including a vaccine. If a patient receives either continuous or short burst low dose corticosteroids within two weeks before or after vaccination, most providers feel there is still benefit. However, doses above this blunt the immune response and can cause an ineffective vaccine response. As always, please speak with your provider about how this specifically applies to you. It is possible there are scenarios that this does not cover. As always, this is not medical advice.)
  • Also, I am no way diminishing or arguing that vaccines cannot cause injuries. This post is not to address that.

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 63

77. Can you have anaphylaxis with high blood pressure?

  • Yes.
  • The misconception that a person with high blood pressure cannot be experiencing anaphylaxis is enduring and dangerous.
  • Author’s note: Thanks to the intrepid reader who caught a big typo right here. When I published the post, it said, “The misconception that a person with high blood pressure can be experiencing anaphylaxis is enduring and dangerous.” This is a whopper mistake. It should say,  “The misconception that a person with high blood pressure canNOT be experiencing anaphylaxis is enduring and dangerous.” You CAN have high blood pressure and anaphylaxis at the same time. Thanks again!
  • Lots of providers (and patients) think that high blood pressure rules out anaphylaxis. This is not true.
  • This misunderstanding comes from confusing two closely related but distinct concepts: anaphylaxis and anaphylactic shock.
  • Anaphylaxis is a severe allergic reaction affecting multiple organ systems.
  • Anaphylactic shock is when anaphylaxis causes such poor blood circulation that the heart cannot pump out enough blood to the body.
  • Anaphylactic shock is a form of circulatory shock, which means exactly what I just described: oxygenated blood is not being pumped out of the heart and through the blood vessels to the tissues that need it.
  • Anaphylactic shock is defined as blood pressure 30% below the patient’s baseline or a systolic blood pressure below 90 mm Hg. The systolic blood pressure is the top number when you get your blood pressure checked. If that top number is below 90 mm Hg, and that is the result of anaphylaxis, you are in anaphylactic shock.
  • Anaphylactic shock is the most serious potential complication of anaphylaxis. Anaphylactic shock happens when the chemicals released by mast cells cause a lot of the fluid in the bloodstream to “fall out” of the bloodstream and get stuck in the tissues.
  • When this happens, that fluid loss causes the blood pressure to drop. In response, the heart beats faster to try and use the blood it still has left to get oxygen to the body. However, at a certain point, even beating really fast is not enough to get enough blood to the tissues. At this point, shock sets in.
  • Anaphylactic shock occurs specifically as a result of low blood pressure. Because of this, providers strongly associate low blood pressure with anaphylaxis. They may not realize that while a person with high blood pressure cannot be having anaphylactic shock, they can be having anaphylaxis.
  • Part of the confusion is that anaphylaxis has been defined lots of different ways by many different groups. I have written a very detailed post about this (see the link below). Even today, exactly what constitutes anaphylaxis not agreed upon by everybody.
  • The most widely used criteria in the US are the criteria published in 2006 by the World Allergy Organization journal. These criteria explicitly state that a person does not need to have low blood pressure to be having anaphylaxis. A person can meet these criteria based upon a variety of combinations of symptom and vital signs that do not include low blood pressure.

2006 WAO Anaphylaxis Criteria

For additional information, please visit the following posts:

The definition of anaphylaxis
Anaphylaxis and mast cell reactions

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 49

 

 

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 62

76. Is it true that allergic reactions can cause heart attacks?

  • Yes.
  • Kounis Syndrome is an acute coronary syndrome caused by activated mast cells releasing chemicals. It is sometimes referred to as “allergic heart attack.” In acute coronary syndrome, there is not enough blood being pumped into the heart. It is named for two of the large blood vessels supplying oxygen to the heart, the coronary arteries. When not enough blood is getting to the heart via the coronary arteries, it can damage heart muscle, sometimes permanently. Heart attack and angina are examples of acute coronary syndromes.
  • In Kounis Syndrome, mast cells become activated, releasing lots of chemicals. These chemicals can irritate the coronary artery, causing it to spasm. This spasm reduces the amount of blood getting to the heart. Sometimes, mast cell activation can trigger the formation of a clot. A clot can be the reason not enough blood is passing through the artery.
  • Several of the molecules released by mast cells can affect the cardiovascular system and contribute to causing Kounis Syndrome. Histamine and leukotrienes can cause the coronary artery to narrow. It can also activate platelets, helping a clot to form. Both tryptase and chymase can cause clots formed elsewhere to break off and get stuck in the coronary artery.
  • Mast cells also help regulate an important molecule called angiotensin II. Angiotensin II is a powerful regulator of blood pressure and can cause the coronary artery to narrow and tighten up.
  • People with Kounis Syndrome may have a history of coronary artery disease. Some patients have a stent in the coronary artery from a previous coronary issue. A stent is a tube that helps keep the blood vessel the right size so that the heart gets the blood it needs. However, many patients with Kounis Syndrome do not have any history of problems with their heart or blood vessels.
  • The symptoms of Kounis Syndrome sometimes look just like the symptoms of any other mast cell reaction or anaphylaxis, making it hard to know that a person is having Kounis Syndrome. Chest pain, irregular heart beat, the heart beating too fast or too slow, and palpitations are all common symptoms of Kounis Syndrome.
  • Another tricky thing about Kounis Syndrome is that it doesn’t always show up on the tests we use to look for heart attack or coronary issues. Because of this, doctors don’t always realize what is happening. Some people do have positive results to these tests, things like EKG, echocardiogram, chest x-ray, and bloodwork to look at levels at cardiac enzymes or troponin. Cardiac enzymes and troponins are often high in a person who is having a heart attack but are sometimes normal for patients with Kounis Syndrome.
  • In order to manage Kounis Syndrome, patients may need treatment for both the allergic reaction and the coronary syndrome.
  • Treatment for the allergic reaction is similar to anaphylaxis treatment: an H1 antihistamine like Benadryl, an H2 antihistamine like famotidine, a corticosteroid like methylprednisolone, IV fluids, and sometimes epinephrine, if that’s appropriate. Please note that epinephrine is not always appropriate for patients who have Kounis Syndrome because epinephrine can actually also cause the coronary artery to narrow.
  • Treatment for the cardiovascular aspect of Kounis Syndrome is very dependent upon symptoms and test results. Calcium channel blockers like verapamil, aspirin, and nitroglycerin are commonly used. Importantly, some of the common medications used to manage coronary syndrome are not safe for mast cell patients. These medications include beta blockers like metoprolol or atenolol, and, to a lesser extent, ACE inhibitors like lisinophil. These medications can interfere with epinephrine so epinephrine may not work if a patient needs it for anaphylaxis.
  • Anything that triggers mast cell activation can cause Kounis Syndrome, including emotional stress.

For additional information, please visit the following posts:
Kounis Syndrome: Subtypes and effects of mast cell mediators (Part 1 of 4)
Kounis Syndrome: Diagnosis (Part 2 of 4)
Kounis Syndrome: Treatment (Part 3 of 4)
Kounis Syndrome: Stress (Part 4 of 4)
Beta blockers and epinephrine
Cardiovascular manifestations of mast cell disease: Part 1 of 5
Cardiovascular manifestations of mast cell disease: Part 2 of 5
Cardiovascular manifestations of mast cell disease: Part 3 of 5
Cardiovascular manifestations of mast cell disease: Part 4 of 5
Cardiovascular manifestations of mast cell disease: Part 5 of 5
The Provider Primers Series: Medications that impact mast cell degranulation and anaphylaxis

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 61

75. What other diseases and disorders are commonly associated with mast cell disease?

I often joke that it would be easier to list what conditions are not commonly associated with mast cell disease because so many conditions occur alongside it. However, there are some conditions that you see a lot in the mast cell population relative to others. In every instance, mast cell disease has the potential to irritate the other condition and vice verse.

Clonal hematologic disorders. Systemic mastocytosis is so frequently accompanied by other blood disorders that it has a diagnosis specifically for this phenomenon: systemic mastocytosis with associated hematologic disorder (SM-AHD). It is estimated that up to 40% of patients with SM eventually develop another clonal hematologic disorder. A clonal hematologic disorder is a condition in which your bone marrow makes too many blood cells. Examples include chronic myelogenous leukemia, acute myeloid leukemia, polycythemia vera, myelofibrosis, and essential thrombocythemia.

Unlike mastocytosis, MCAS can occur secondarily to lots of conditions. In some instances, it’s not clear if the MCAS is secondary to a condition or the condition is secondary to MCAS or neither.

Heritable connective tissue diseases. Ehlers Danlos Syndrome (EDS), is the most common connective tissue disease in the mast cell population. There are multiple types of EDS. While hypermobility type EDS (formerly called Type III) is the most common in MCAS patients, other forms occur also. Other connective tissue diseases seen in mast cell patients include Marfan Syndrome and Loeys-Dietz Syndrome.

Dysautonomia. Dysautonomia is a condition in which your body’s autonomic nervous system doesn’t regulate essential bodily functions correctly. POTS is the most common form of dysautonomia found in mast cell patients but other forms occur, too.

Mast cell patients commonly have MCAS, EDS and POTS together. They cooccur so commonly that some experts think that that this presentation is actually one overarching disease rather than three separate ones affecting mast cell patients.

Eosinophilic GI disease. Mast cells are closely related to eosinophils. They activate eosinophils and eosinophils activate them. Mast cell patients sometimes have eosinophil GI disease where eosinophils activate to lots of triggers and damage the GI tract.

Immunodeficiency. Conditions that specifically impair a person’s immunity, especially those that affect T or B cells, like SCID or CVID, are not unusual in mast cell patients.

Gastrointestinal disease. Mast cells normally live in the GI tract so they are very sensitive to GI inflammation. MCAS can occur secondarily to lots of GI diseases. Crohn’s, ulcerative colitis, inflammatory bowel disease, and irritable bowel syndrome are examples. GI disorders that specifically affect motility are also seen in mast cell disease, like gastroparesis and chronic intestinal pseudoobstruction.

Allergies. Some mast cell patients have true IgE allergies or other allergic disorders like atopic dermatitis.

Autoimmune disease. Autoimmune disease is more common in MCAS patients than in SM patients. The specific disorder could be virtually any autoimmune condition, including rheumatoid arthritis, lupus, Hashimoto’s thyroiditis, autoimmune urticaria, and many others.

Adrenal insufficiency. The body’s mechanisms for produce stress hormones like cortisol can become dysregulated in mast cell patients. This results in a situation in which the body does not make enough steroids of its own to take care of the body during periods of stress. Patients with adrenal insufficiency are dependent upon daily steroids to stay safe.

Chiari malformation. This condition affects the space around a person’s brainstem, causing a wide array of symptoms. Some patients have surgery for this condition.

Asthma. It is difficult to draw an exact line where mast cell disease ends and asthma begins in mast cell patients as the symptoms can be virtually identical.

This list is not exhaustive. Many other conditions sometimes occur in mast cell patients.

For additional reading, please visit the following posts:
The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 31
The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 32

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 60

74. Is mast cell activation the cause of many other diseases?

No, but it is involved in many other diseases.

I write a lot about mast cells and the way they are involved in various other conditions. Mast cells live throughout the body in many tissues. Because they are in so many tissues, their role in many diseases is well researched.

Mast cell activation is not the same as mast cell activation syndrome. I have written about this here. Basically, there are tons of things in the body that cause mast cell activation. These are conditions where we want or need mast cells to become activated because then the mast cells help keep our body working the way it is supposed to. For example, during a woman’s menstrual cycle, if mast cells could not become activated the way they normally do, a woman’s period could become very irregular. This in turn could affect the amounts and types of hormones in a person’s body, causing symptoms and problems.

Situations where mast cells normally become activated include labor and delivery, during any type of infection, during situations where the GI tract is inflamed, when your body is growing new blood vessels, any time your body is healing, and when you have cancer or a tumor. In these situations, the mast cells activate to send signals to other cells in the body to help regulate what is happening. Mast cell activation is not always bad. It is, in fact, a normal and necessary process that happens in the body of everyone every day. Mast cell activation is necessary to stay alive.

Now let’s look at the role of mast cells in diseases that are not mast cell diseases.

When I was little, I was a Girl Scout for three weeks before I got kicked out. (This is true and not related to mast cell activation.) There was a game that we used to play called “Telephone.” During this game, everyone would sit in a big circle. One person would think up a short sentence and whisper it into the ear of the person next to her, who would in turn whisper into the ear of the person next to them, and so on. Often, people misheard the sentence and so it was completely wrong by the time it got back to the person who started it.

Diseases in the human body are like a very complex game of Telephone. In every disease, many cells that did not cause the disease can cause symptoms even though they are not the cause. The way to know if a disease is a true mast cell disease is to know which cell first messed up the sentence in the game of Telephone.

Here’s what this sounds like in people:

Lisa says to Pari: Puff the magic dragon

Pari says to Dana: Puff the magic dragon

Dana says to Celeste: Puff’s magic is dragging

Celeste says to Lisa: Puff’s magic is dragging

So in this situation, Dana changed the sentence. Because she changed it, Celeste also had the sentence wrong. So Dana caused the problem. Celeste did not. (In real life, Dana is lovely and not a problem.)

When your body has a disease, the symptoms and damage are caused by cells giving or receiving messages incorrectly. Instead of using words to talk to each other, cells use molecules. Even though they use molecules to talk to each other, it is very much like a language. If the message is “said” wrong in this cell language, then all the cells after the mistake are doing things that are unhelpful or dangerous. However, they are NOT the cause of the disease because they are not the one that changed the message.

Now let’s look at this with cells in the human body during a disease. I’m going to use a very simplified explanation of rheumatoid arthritis as an example.

T cell says to B cell: I think our body is dangerous to us!

B cell says to T cell: Oh, snap! Let’s get the word out!

B cell needs to tell the body about this danger. It makes a message that says, “Danger right here! Danger!”

B cell says to mast cell: WE ARE IN GRAVE DANGER! ATTACK! ATTACK!

Mast cell to other cells: KILL THIS INVADER KILL IT TO DEATH

Except there is no invader. It is just your regular joints being regular and not dangerous.

Other cells: *trying to kill your joints*

Joints: Uh, guys, I’m actually supposed to be here –

Mast cell: I CAN’T HEAR YOU OVER THIS SCREAMING B CELL

Let’s recap.

T cell gives the B cell bad information. This causes B cell to alert other cells of “danger.” But this wasn’t the B cell’s fault. It was the fault of the T cell which gave the B cell bad information. And that means that everything that comes after the T cell giving the B cell the bad information makes the problem worse but is not really the cause of the problem.

I used rheumatoid arthritis as an example because a lot of treatment of rheumatoid arthritis revolves around blocking those danger signals from mast cells. But is the mast cell the cause of the rheumatoid arthritis? No, it is not. It is not the cause because mast cells have to respond to commands from B cells in order to help protect us against infection and do other helpful things. The mast cell did not decide the joints were dangerous. The B cell told the mast cell this so the mast cell is working with bad information that it doesn’t realize is bad.

If the mast cell isn’t the cause of the rheumatoid arthritis, why do we bother blocking mast cell signals instead of telling the T cell and B cell to be quiet? Because quieting the mast cell signal will help with symptoms and we know how to quiet the mast cell signal and we don’t always know how to quiet the other signals. Stopping the mast cell signal can make symptoms much better but it does NOT cure rheumatoid arthritis. Why? Because mast cells do not cause rheumatoid arthritis.

So mast cells are involved in many diseases without causing most of them. The way you can tell they are not the cause is that they did not start the wrong “message” that caused the symptoms and damage.

Now, I would like to address the fact that there are some diseases that have some research to suggest that they may genuinely be a form of mast cell activation disease. Fibromyalgia is one of these diseases. However, at this time, there is not enough evidence for it to be classified as a mast cell disease.

I tried to be as clear as possible about a very complicated topic. If I didn’t do it well, tell me and I’ll have another go at it.

(Author’s note: This is a SUPER simplified version of rheumatoid arthritis. RA is an autoimmune disease and it is still not clear exactly how the T cells and B cells start sending the wrong messages in an autoimmune disease. I just simplified it here to make it easier to see my point.)

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 59

73. Can mast cell disease cause organ damage?

  • Yes.
  • The term organ damage is tricky because people use it to mean a lot of things while providers and researchers often use it to mean one very specific thing. For providers and researchers, the term “organ damage” usually means a change in the organ that affects its structure, like it becomes misshapen or deformed in some way. Structural changes like this are often irreversible. This damage to the organ’s shape and structure usually affects how the organ works, called organ function.
  • When patients and laypeople talk about organ damage, they usually mean a change in the way the organ functions, even if the structure is not changed at all. This is different in a very important way: changes in an organ that do not affect its permanent structure can sometimes be reversible.
  • Both cutaneous and systemic mastocytosis cause organ damage in a way that damages the organ’s structure. When too many mast cells burrow into the tissue of an organ, it has to push other things out of the way. When you have mastocytosis, the mast cells like to stick together and form a big clump in the tissue. This punches holes in the tissue, affecting the organ’s structure and shape. This is called dense infiltration. It is one of the criteria for systemic mastocytosis and also happens in cutaneous mastocytosis.
  • In patients with mastocytosis, those mast cells clumping together cause a lot of the organ damage. This means that people who have the most mast cells usually have the worst organ damage. Patients with malignant forms of mast cell disease, like mast cell leukemia or aggressive systemic mastocytosis, often have organs that are riddled with TONS of mast cells.
  • Mast cells don’t live in the blood so when your body makes way too many mast cells, those mast cells will dive into whatever organ they can to get out of the bloodstream. This causes damage to the structure that you can see with scans or in biopsies.  People with mast cell leukemia and aggressive systemic mastocytosis suffer so much damage to the shape and function of their organs that the organs can totally stop working, called organ failure.
  • One of the key differences researchers and providers see between mastocytosis and mast cell activation syndrome is that mast cells don’t cause THIS TYPE of structural damage in mast cell activation syndrome patients.
  • We know this because in biopsies, they do not have mast cells clumped together to punch holes in the tissue. Sometimes they have lots of mast cells, but it is much less damaging to the tissue if they aren’t clumped together. Think of it like poking something with finger versus punching with your fist.
  • In MCAS, mast cells do not cause structural damage to organs IN THIS WAY. However, many people with MCAS do have structural damage to their organs. Many of them also have organs that do not function correctly even if the organs look normal.
  • Even if you don’t have mast cells punching holes in all your organs, they can still do a lot of damage. This is because mast cells cause lots of inflammation, which can stress out your organs. Over time, your organs can be damaged by the mast cells releasing too many mediators. While this is not always dangerous, it is certainly painful and frustrating.
  • Many MCAS and mastocytosis patients have a lot of damage to their GI tracts from years of vomiting, obstructions, diarrhea or constipation. Hives and mastocytosis spots can damage your skin, causing discoloration, scarring or sensitivity. Muscles can become weaker over time because of mast cell inflammation. Swelling can stretch out your skin and connective tissues. Nerves can be damaged significantly, affecting organ function. Bones can become brittle and break, or can become too dense because the body is making new bone when it shouldn’t.
  • All of these effects on organ function can be caused by mast cells. Major changes in organ function can also cause secondary conditions to arise.
  • Mast cell patients are also at an increased risk for anaphylaxis which can cause changes in organ function or organ damage.
  • Patients who have trouble breathing or low blood pressure may not be getting enough oxygen to their whole body. That can cause lasting damage if it goes on long enough.

For more detailed reading, please visit the following posts:

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 58

72. How does mast cell disease affect your dental health?

Mast cells are found naturally throughout your body. One of their most important functions is to fight off parasites and infections in your GI tract, starting in the mouth. Everyone has mast cells in their mouth, although most people don’t have a lot of them. They release mediators there like they do everywhere else. For mast cell patients, releasing too many mediators can be a source of symptoms. It causes the oral symptoms many of us experience, including swelling of the lips, mouth and tongue. It can also cause excessive salivation or dryness depending upon the patient.

Your teeth and mouth can be damaged by things that are very acidic. Frequent vomiting as a result of mast cell disease (or anything) can really damage your teeth. It erodes the protective coating over your teeth. It is very hard to effectively wash all the acid out of your mouth after vomiting as it can collect at or below the gumline. This is the reason I personally have had some dental issues in the last few years. Even though I was very diligent about brushing after vomiting, I couldn’t brush beneath the gums to prevent formation of cavities.

My dentist recently recommended that I neutralize the acid in my mouth before brushing instead of brushing immediately after vomiting. Brushing your teeth with acid in your mouth spreads it around your teeth and causes little craters to form on your teeth. My dentist recommended I rinse my mouth out with water and baking soda to neutralize the acid before brushing after I vomit. I also use a prescription toothpaste to help keep my teeth strong. (Always consult your own care team about specific steps you can take before changing your care plan.)

Redness and burning in the mouth can be the result of mast cell activation. For mast cell patients, this can be worsened by exposure to triggers, especially triggers you ingest.

Gum health can be tricky for mast cell patients. For those of us with connective tissue diseases like Ehlers Danlos, we are always at a disadvantage. My old dentist used to constantly give me crap about not flossing even I flossed regularly. This was years before I knew I had EDS and that patients with EDS often have bleeding gums regardless of flossing. Bleeding of any kind activates mast cells, so if you bleed when you brush your teeth, that can be a trigger.

Having swollen or bleeding gums makes it easier for you to get infections in your mouth. Even more seriously, it makes it much easier for infectious organisms to be transferred from your mouth into your bloodstream, where they can cause an infection. This is exactly what happened to me in March 2016 when I had the Danger Tooth pulled. This is a concern for anyone but especially people who have central lines. When you have a central line, bugs that end up in your bloodstream can stick onto your central line and grow more quickly. As this line ends just above your heart, line infections can be very serious, even if they started in the mouth and not the line itself. Sometime dentists treat patients with antibiotics before dental care to avoid this, but it is very patient specific.

Dental cleanings use lots of materials or meds that can trigger mast cell degranulation. A lot of them have extra junk in them, like dyes or flavors. Vibration and scraping during the cleaning can be triggering. Many mouth washes are off limits for us, especially those with dyes and alcohols. And of course, dental work can be painful or cause bleeding which is problematic for us. Anxiety is also common.

I personally do okay with the plain grey pomice scrub for cleanings. Mast cell patients should premedicate before any procedures, including detail appointments. See the link below for the premedication recommendations for mast cell patients.

Dental procedures or surgeries have the same problems as cleanings but to a stronger degree. Installing permanent or semipermanent hardware into the mouth carries the risk of later reacting to it. Braces, retainers and splints can be super tricky for us. The decision to put in a crown or something similar should involve the mast cell specialist on your care team. I personally have opted to have a tooth pulled rather than run the risk of later reactions to the crown.

Numbing medications can be mast cell triggers, like some of the –caine anesthetics. Sometimes dentists will use a preparation of anesthetic that also has a little epinephrine in it to help control the bleeding. While I personally do not have problems with this preparation, a lot of mast cell patients do because it contains a preservative.

For more detailed reading, please visit the following posts:

The Provider Primer Series: Medications that impact mast cell degranulation and anaphylaxis

Premedication and surgical concerns in mast cell patients

 

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 57

71. What other diseases “look like” mast cell disease?

Mast cell diseases have many symptoms that are also commonly found in other disorders. This is one of the reasons why it is difficult to diagnose correctly. The following conditions have symptoms that can look like mast cell disease.

Neuroendocrine cells are specialized cells that help to pass signals from the nervous system to nearby cells, causing those cells to release hormones. There are many types of neuroendocrine tumors. Some conditions that look like mast cell disease are caused by these tumors. Symptoms from them are caused by the response of too much hormone.

Carcinoid syndrome is the result of a rare cancerous growth called carcinoid tumor. This tumor releases too much serotonin into the body. This can cause flushing, nausea, vomiting, diarrhea, difficulty breathing, and cardiovascular abnormalities such as abnormal heart rhythm. Mast cells also release serotonin but they release much less than carcinoid tumors.

VIPoma means vasoactive intestinal peptide –oma. When a word has –oma at the end, it means that it is a tumor. A VIPoma is a tumor that starts in the pancreas. It releases a chemical called vasoactive intestinal peptide. VIPoma can cause flushing, low blood pressure, and severe diarrhea leading to dehydration. A VIPoma can also abnormalities in the composition of the blood. Many patients have low potassium, high calcium, and high blood sugar.

Pheochromocytomas start as cells in the adrenal glands. They release excessive norepinephrine and epinephrine. They can cause headaches, heart palpitations, anxiety, and blood pressure abnormalities, among other things.

Zollinger-Ellison syndrome is a condition in which tumors release too much of a hormone called gastrin into the GI tract. This causes the stomach to make too much acid, damaging the stomach and affecting absorption.

Some blood cancers can cause mast cells to become overly activated. They may also cause an increase in tryptase, an important marker in diagnosing systemic mastocytosis.

Some other cancerous tumors like medullary thyroid carcinoma can cause mast cell type symptoms including flushing, diarrhea, and itching.

Most diseases with any allergic component can look like mast cell disease.

Eosinophilic gastrointestinal disease occurs when certain white blood cells called eosinophils become too reactive, causing inflammation to many triggers. Furthermore, people are more frequently being diagnosed with both EGID and mast cell disease.

Celiac disease is an autoimmune disease in which gluten causes an inflammatory reaction inside the body. The damage to the GI tract can be significant. Malabsorption is not unusual. Children with celiac disease may grow poorly. Bloating, diarrhea, ulceration, and abdominal pain are commonly reported.

FPIES (food protein induced enterocolitis syndrome) can cause episodes of vomiting, acidosis, low blood pressure and shock as a result of ingesting a food trigger.

Traditional (IgE) allergies can also look just like mast cell disease. They are usually distinguished by the fact that mast cell patients may react to a trigger whether or not their body specifically recognizes it as an allergen (does not make an IgE molecule to the trigger). Confusingly, it is possible to have both traditional IgE allergies and mast cell disease.

Postural orthostatic tachycardia syndrome (POTS) is commonly found in patients with mast cell disease. However, POTS itself can have similar symptoms to mast cell disease. Palpitations, blood pressure abnormalities, sweating, anxiety, nausea, and headaches are some symptoms both POTS and mast cell disease have. There are also other forms of dysautonomia which mimic the presentation of mast cell disease.

Achlorhydria is a condition in which the stomach does not produce enough acid to break down food properly. This can cause a lot of GI pain, malabsorption, anemia, and weight loss.

Hereditary angioedema and acquired angioedema are conditions that cause a person to swell, often severely. Swelling may affect the airway and can be fatal if the airway is not protected. Swelling within the abdomen can cause significant pain and GI symptoms like nausea and vomiting.

Gastroparesis is paralysis of the stomach. People with GP often experience serious GI pain, vomiting, nausea, diarrhea or constipation, bloating and swelling.

Inflammatory bowel diseases and irritable bowel syndrome can all cause GI symptoms identical to what mast cell patients experience.

This list is not exhaustive. There are many other diseases that can look similar to mast cell disease. These are the ones I have come across most commonly.

For more detailed reading, please visit the following posts:

Gastroparesis: Part 1
Gastroparesis: Treatment (part 2)
Gastroparesis: Diabetes and gastroparesis (Part 3)
Gastroparesis: Post-surgical gastroparesis (Part 4)
Gastroparesis: Less common causes (Part 5)
Gastroparesis: Autonomic nervous system and vagus nerve (Part 6)
Gastroparesis: Idiopathic gastroparesis (Part 7)

Food allergy series: Food related allergic disorders
Food allergy series: FPIES (part 1)
Food allergy series: FPIES (part 2)
Food allergy series: Eosinophilic colitis
Food allergy series: Eosinophilic gastrointestinal disease (part 1)
Food allergy series: Eosinophilic gastrointestinal disease (part 2)
Food allergy series: Eosinophilic gastrointestinal disease (part 3)
Food allergy series: Eosinophilic esophagitis (Part 1)
Food allergy series: Eosinophilic esophagitis (Part 2)
Food allergy series: Eosinophilic esophagitis (Part 3)

Angioedema: Part 1
Angioedema: Part 2
Angioedema: Part 3
Angioedema: Part 4

Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 1
Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 2
Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 3
Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 4
Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 5
Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 6
Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 7