The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 61

75. What other diseases and disorders are commonly associated with mast cell disease?

I often joke that it would be easier to list what conditions are not commonly associated with mast cell disease because so many conditions occur alongside it. However, there are some conditions that you see a lot in the mast cell population relative to others. In every instance, mast cell disease has the potential to irritate the other condition and vice verse.

Clonal hematologic disorders. Systemic mastocytosis is so frequently accompanied by other blood disorders that it has a diagnosis specifically for this phenomenon: systemic mastocytosis with associated hematologic disorder (SM-AHD). It is estimated that up to 40% of patients with SM eventually develop another clonal hematologic disorder. A clonal hematologic disorder is a condition in which your bone marrow makes too many blood cells. Examples include chronic myelogenous leukemia, acute myeloid leukemia, polycythemia vera, myelofibrosis, and essential thrombocythemia.

Unlike mastocytosis, MCAS can occur secondarily to lots of conditions. In some instances, it’s not clear if the MCAS is secondary to a condition or the condition is secondary to MCAS or neither.

Heritable connective tissue diseases. Ehlers Danlos Syndrome (EDS), is the most common connective tissue disease in the mast cell population. There are multiple types of EDS. While hypermobility type EDS (formerly called Type III) is the most common in MCAS patients, other forms occur also. Other connective tissue diseases seen in mast cell patients include Marfan Syndrome and Loeys-Dietz Syndrome.

Dysautonomia. Dysautonomia is a condition in which your body’s autonomic nervous system doesn’t regulate essential bodily functions correctly. POTS is the most common form of dysautonomia found in mast cell patients but other forms occur, too.

Mast cell patients commonly have MCAS, EDS and POTS together. They cooccur so commonly that some experts think that that this presentation is actually one overarching disease rather than three separate ones affecting mast cell patients.

Eosinophilic GI disease. Mast cells are closely related to eosinophils. They activate eosinophils and eosinophils activate them. Mast cell patients sometimes have eosinophil GI disease where eosinophils activate to lots of triggers and damage the GI tract.

Immunodeficiency. Conditions that specifically impair a person’s immunity, especially those that affect T or B cells, like SCID or CVID, are not unusual in mast cell patients.

Gastrointestinal disease. Mast cells normally live in the GI tract so they are very sensitive to GI inflammation. MCAS can occur secondarily to lots of GI diseases. Crohn’s, ulcerative colitis, inflammatory bowel disease, and irritable bowel syndrome are examples. GI disorders that specifically affect motility are also seen in mast cell disease, like gastroparesis and chronic intestinal pseudoobstruction.

Allergies. Some mast cell patients have true IgE allergies or other allergic disorders like atopic dermatitis.

Autoimmune disease. Autoimmune disease is more common in MCAS patients than in SM patients. The specific disorder could be virtually any autoimmune condition, including rheumatoid arthritis, lupus, Hashimoto’s thyroiditis, autoimmune urticaria, and many others.

Adrenal insufficiency. The body’s mechanisms for produce stress hormones like cortisol can become dysregulated in mast cell patients. This results in a situation in which the body does not make enough steroids of its own to take care of the body during periods of stress. Patients with adrenal insufficiency are dependent upon daily steroids to stay safe.

Chiari malformation. This condition affects the space around a person’s brainstem, causing a wide array of symptoms. Some patients have surgery for this condition.

Asthma. It is difficult to draw an exact line where mast cell disease ends and asthma begins in mast cell patients as the symptoms can be virtually identical.

This list is not exhaustive. Many other conditions sometimes occur in mast cell patients.

For additional reading, please visit the following posts:
The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 31
The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 32

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 60

74. Is mast cell activation the cause of many other diseases?

No, but it is involved in many other diseases.

I write a lot about mast cells and the way they are involved in various other conditions. Mast cells live throughout the body in many tissues. Because they are in so many tissues, their role in many diseases is well researched.

Mast cell activation is not the same as mast cell activation syndrome. I have written about this here. Basically, there are tons of things in the body that cause mast cell activation. These are conditions where we want or need mast cells to become activated because then the mast cells help keep our body working the way it is supposed to. For example, during a woman’s menstrual cycle, if mast cells could not become activated the way they normally do, a woman’s period could become very irregular. This in turn could affect the amounts and types of hormones in a person’s body, causing symptoms and problems.

Situations where mast cells normally become activated include labor and delivery, during any type of infection, during situations where the GI tract is inflamed, when your body is growing new blood vessels, any time your body is healing, and when you have cancer or a tumor. In these situations, the mast cells activate to send signals to other cells in the body to help regulate what is happening. Mast cell activation is not always bad. It is, in fact, a normal and necessary process that happens in the body of everyone every day. Mast cell activation is necessary to stay alive.

Now let’s look at the role of mast cells in diseases that are not mast cell diseases.

When I was little, I was a Girl Scout for three weeks before I got kicked out. (This is true and not related to mast cell activation.) There was a game that we used to play called “Telephone.” During this game, everyone would sit in a big circle. One person would think up a short sentence and whisper it into the ear of the person next to her, who would in turn whisper into the ear of the person next to them, and so on. Often, people misheard the sentence and so it was completely wrong by the time it got back to the person who started it.

Diseases in the human body are like a very complex game of Telephone. In every disease, many cells that did not cause the disease can cause symptoms even though they are not the cause. The way to know if a disease is a true mast cell disease is to know which cell first messed up the sentence in the game of Telephone.

Here’s what this sounds like in people:

Lisa says to Pari: Puff the magic dragon

Pari says to Dana: Puff the magic dragon

Dana says to Celeste: Puff’s magic is dragging

Celeste says to Lisa: Puff’s magic is dragging

So in this situation, Dana changed the sentence. Because she changed it, Celeste also had the sentence wrong. So Dana caused the problem. Celeste did not. (In real life, Dana is lovely and not a problem.)

When your body has a disease, the symptoms and damage are caused by cells giving or receiving messages incorrectly. Instead of using words to talk to each other, cells use molecules. Even though they use molecules to talk to each other, it is very much like a language. If the message is “said” wrong in this cell language, then all the cells after the mistake are doing things that are unhelpful or dangerous. However, they are NOT the cause of the disease because they are not the one that changed the message.

Now let’s look at this with cells in the human body during a disease. I’m going to use a very simplified explanation of rheumatoid arthritis as an example.

T cell says to B cell: I think our body is dangerous to us!

B cell says to T cell: Oh, snap! Let’s get the word out!

B cell needs to tell the body about this danger. It makes a message that says, “Danger right here! Danger!”

B cell says to mast cell: WE ARE IN GRAVE DANGER! ATTACK! ATTACK!

Mast cell to other cells: KILL THIS INVADER KILL IT TO DEATH

Except there is no invader. It is just your regular joints being regular and not dangerous.

Other cells: *trying to kill your joints*

Joints: Uh, guys, I’m actually supposed to be here –

Mast cell: I CAN’T HEAR YOU OVER THIS SCREAMING B CELL

Let’s recap.

T cell gives the B cell bad information. This causes B cell to alert other cells of “danger.” But this wasn’t the B cell’s fault. It was the fault of the T cell which gave the B cell bad information. And that means that everything that comes after the T cell giving the B cell the bad information makes the problem worse but is not really the cause of the problem.

I used rheumatoid arthritis as an example because a lot of treatment of rheumatoid arthritis revolves around blocking those danger signals from mast cells. But is the mast cell the cause of the rheumatoid arthritis? No, it is not. It is not the cause because mast cells have to respond to commands from B cells in order to help protect us against infection and do other helpful things. The mast cell did not decide the joints were dangerous. The B cell told the mast cell this so the mast cell is working with bad information that it doesn’t realize is bad.

If the mast cell isn’t the cause of the rheumatoid arthritis, why do we bother blocking mast cell signals instead of telling the T cell and B cell to be quiet? Because quieting the mast cell signal will help with symptoms and we know how to quiet the mast cell signal and we don’t always know how to quiet the other signals. Stopping the mast cell signal can make symptoms much better but it does NOT cure rheumatoid arthritis. Why? Because mast cells do not cause rheumatoid arthritis.

So mast cells are involved in many diseases without causing most of them. The way you can tell they are not the cause is that they did not start the wrong “message” that caused the symptoms and damage.

Now, I would like to address the fact that there are some diseases that have some research to suggest that they may genuinely be a form of mast cell activation disease. Fibromyalgia is one of these diseases. However, at this time, there is not enough evidence for it to be classified as a mast cell disease.

I tried to be as clear as possible about a very complicated topic. If I didn’t do it well, tell me and I’ll have another go at it.

(Author’s note: This is a SUPER simplified version of rheumatoid arthritis. RA is an autoimmune disease and it is still not clear exactly how the T cells and B cells start sending the wrong messages in an autoimmune disease. I just simplified it here to make it easier to see my point.)

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 59

73. Can mast cell disease cause organ damage?

  • Yes.
  • The term organ damage is tricky because people use it to mean a lot of things while providers and researchers often use it to mean one very specific thing. For providers and researchers, the term “organ damage” usually means a change in the organ that affects its structure, like it becomes misshapen or deformed in some way. Structural changes like this are often irreversible. This damage to the organ’s shape and structure usually affects how the organ works, called organ function.
  • When patients and laypeople talk about organ damage, they usually mean a change in the way the organ functions, even if the structure is not changed at all. This is different in a very important way: changes in an organ that do not affect its permanent structure can sometimes be reversible.
  • Both cutaneous and systemic mastocytosis cause organ damage in a way that damages the organ’s structure. When too many mast cells burrow into the tissue of an organ, it has to push other things out of the way. When you have mastocytosis, the mast cells like to stick together and form a big clump in the tissue. This punches holes in the tissue, affecting the organ’s structure and shape. This is called dense infiltration. It is one of the criteria for systemic mastocytosis and also happens in cutaneous mastocytosis.
  • In patients with mastocytosis, those mast cells clumping together cause a lot of the organ damage. This means that people who have the most mast cells usually have the worst organ damage. Patients with malignant forms of mast cell disease, like mast cell leukemia or aggressive systemic mastocytosis, often have organs that are riddled with TONS of mast cells.
  • Mast cells don’t live in the blood so when your body makes way too many mast cells, those mast cells will dive into whatever organ they can to get out of the bloodstream. This causes damage to the structure that you can see with scans or in biopsies.  People with mast cell leukemia and aggressive systemic mastocytosis suffer so much damage to the shape and function of their organs that the organs can totally stop working, called organ failure.
  • One of the key differences researchers and providers see between mastocytosis and mast cell activation syndrome is that mast cells don’t cause THIS TYPE of structural damage in mast cell activation syndrome patients.
  • We know this because in biopsies, they do not have mast cells clumped together to punch holes in the tissue. Sometimes they have lots of mast cells, but it is much less damaging to the tissue if they aren’t clumped together. Think of it like poking something with finger versus punching with your fist.
  • In MCAS, mast cells do not cause structural damage to organs IN THIS WAY. However, many people with MCAS do have structural damage to their organs. Many of them also have organs that do not function correctly even if the organs look normal.
  • Even if you don’t have mast cells punching holes in all your organs, they can still do a lot of damage. This is because mast cells cause lots of inflammation, which can stress out your organs. Over time, your organs can be damaged by the mast cells releasing too many mediators. While this is not always dangerous, it is certainly painful and frustrating.
  • Many MCAS and mastocytosis patients have a lot of damage to their GI tracts from years of vomiting, obstructions, diarrhea or constipation. Hives and mastocytosis spots can damage your skin, causing discoloration, scarring or sensitivity. Muscles can become weaker over time because of mast cell inflammation. Swelling can stretch out your skin and connective tissues. Nerves can be damaged significantly, affecting organ function. Bones can become brittle and break, or can become too dense because the body is making new bone when it shouldn’t.
  • All of these effects on organ function can be caused by mast cells. Major changes in organ function can also cause secondary conditions to arise.
  • Mast cell patients are also at an increased risk for anaphylaxis which can cause changes in organ function or organ damage.
  • Patients who have trouble breathing or low blood pressure may not be getting enough oxygen to their whole body. That can cause lasting damage if it goes on long enough.

For more detailed reading, please visit the following posts:

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 58

72. How does mast cell disease affect your dental health?

Mast cells are found naturally throughout your body. One of their most important functions is to fight off parasites and infections in your GI tract, starting in the mouth. Everyone has mast cells in their mouth, although most people don’t have a lot of them. They release mediators there like they do everywhere else. For mast cell patients, releasing too many mediators can be a source of symptoms. It causes the oral symptoms many of us experience, including swelling of the lips, mouth and tongue. It can also cause excessive salivation or dryness depending upon the patient.

Your teeth and mouth can be damaged by things that are very acidic. Frequent vomiting as a result of mast cell disease (or anything) can really damage your teeth. It erodes the protective coating over your teeth. It is very hard to effectively wash all the acid out of your mouth after vomiting as it can collect at or below the gumline. This is the reason I personally have had some dental issues in the last few years. Even though I was very diligent about brushing after vomiting, I couldn’t brush beneath the gums to prevent formation of cavities.

My dentist recently recommended that I neutralize the acid in my mouth before brushing instead of brushing immediately after vomiting. Brushing your teeth with acid in your mouth spreads it around your teeth and causes little craters to form on your teeth. My dentist recommended I rinse my mouth out with water and baking soda to neutralize the acid before brushing after I vomit. I also use a prescription toothpaste to help keep my teeth strong. (Always consult your own care team about specific steps you can take before changing your care plan.)

Redness and burning in the mouth can be the result of mast cell activation. For mast cell patients, this can be worsened by exposure to triggers, especially triggers you ingest.

Gum health can be tricky for mast cell patients. For those of us with connective tissue diseases like Ehlers Danlos, we are always at a disadvantage. My old dentist used to constantly give me crap about not flossing even I flossed regularly. This was years before I knew I had EDS and that patients with EDS often have bleeding gums regardless of flossing. Bleeding of any kind activates mast cells, so if you bleed when you brush your teeth, that can be a trigger.

Having swollen or bleeding gums makes it easier for you to get infections in your mouth. Even more seriously, it makes it much easier for infectious organisms to be transferred from your mouth into your bloodstream, where they can cause an infection. This is exactly what happened to me in March 2016 when I had the Danger Tooth pulled. This is a concern for anyone but especially people who have central lines. When you have a central line, bugs that end up in your bloodstream can stick onto your central line and grow more quickly. As this line ends just above your heart, line infections can be very serious, even if they started in the mouth and not the line itself. Sometime dentists treat patients with antibiotics before dental care to avoid this, but it is very patient specific.

Dental cleanings use lots of materials or meds that can trigger mast cell degranulation. A lot of them have extra junk in them, like dyes or flavors. Vibration and scraping during the cleaning can be triggering. Many mouth washes are off limits for us, especially those with dyes and alcohols. And of course, dental work can be painful or cause bleeding which is problematic for us. Anxiety is also common.

I personally do okay with the plain grey pomice scrub for cleanings. Mast cell patients should premedicate before any procedures, including detail appointments. See the link below for the premedication recommendations for mast cell patients.

Dental procedures or surgeries have the same problems as cleanings but to a stronger degree. Installing permanent or semipermanent hardware into the mouth carries the risk of later reacting to it. Braces, retainers and splints can be super tricky for us. The decision to put in a crown or something similar should involve the mast cell specialist on your care team. I personally have opted to have a tooth pulled rather than run the risk of later reactions to the crown.

Numbing medications can be mast cell triggers, like some of the –caine anesthetics. Sometimes dentists will use a preparation of anesthetic that also has a little epinephrine in it to help control the bleeding. While I personally do not have problems with this preparation, a lot of mast cell patients do because it contains a preservative.

For more detailed reading, please visit the following posts:

The Provider Primer Series: Medications that impact mast cell degranulation and anaphylaxis

Premedication and surgical concerns in mast cell patients

 

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 57

71. What other diseases “look like” mast cell disease?

Mast cell diseases have many symptoms that are also commonly found in other disorders. This is one of the reasons why it is difficult to diagnose correctly. The following conditions have symptoms that can look like mast cell disease.

Neuroendocrine cells are specialized cells that help to pass signals from the nervous system to nearby cells, causing those cells to release hormones. There are many types of neuroendocrine tumors. Some conditions that look like mast cell disease are caused by these tumors. Symptoms from them are caused by the response of too much hormone.

Carcinoid syndrome is the result of a rare cancerous growth called carcinoid tumor. This tumor releases too much serotonin into the body. This can cause flushing, nausea, vomiting, diarrhea, difficulty breathing, and cardiovascular abnormalities such as abnormal heart rhythm. Mast cells also release serotonin but they release much less than carcinoid tumors.

VIPoma means vasoactive intestinal peptide –oma. When a word has –oma at the end, it means that it is a tumor. A VIPoma is a tumor that starts in the pancreas. It releases a chemical called vasoactive intestinal peptide. VIPoma can cause flushing, low blood pressure, and severe diarrhea leading to dehydration. A VIPoma can also abnormalities in the composition of the blood. Many patients have low potassium, high calcium, and high blood sugar.

Pheochromocytomas start as cells in the adrenal glands. They release excessive norepinephrine and epinephrine. They can cause headaches, heart palpitations, anxiety, and blood pressure abnormalities, among other things.

Zollinger-Ellison syndrome is a condition in which tumors release too much of a hormone called gastrin into the GI tract. This causes the stomach to make too much acid, damaging the stomach and affecting absorption.

Some blood cancers can cause mast cells to become overly activated. They may also cause an increase in tryptase, an important marker in diagnosing systemic mastocytosis.

Some other cancerous tumors like medullary thyroid carcinoma can cause mast cell type symptoms including flushing, diarrhea, and itching.

Most diseases with any allergic component can look like mast cell disease.

Eosinophilic gastrointestinal disease occurs when certain white blood cells called eosinophils become too reactive, causing inflammation to many triggers. Furthermore, people are more frequently being diagnosed with both EGID and mast cell disease.

Celiac disease is an autoimmune disease in which gluten causes an inflammatory reaction inside the body. The damage to the GI tract can be significant. Malabsorption is not unusual. Children with celiac disease may grow poorly. Bloating, diarrhea, ulceration, and abdominal pain are commonly reported.

FPIES (food protein induced enterocolitis syndrome) can cause episodes of vomiting, acidosis, low blood pressure and shock as a result of ingesting a food trigger.

Traditional (IgE) allergies can also look just like mast cell disease. They are usually distinguished by the fact that mast cell patients may react to a trigger whether or not their body specifically recognizes it as an allergen (does not make an IgE molecule to the trigger). Confusingly, it is possible to have both traditional IgE allergies and mast cell disease.

Postural orthostatic tachycardia syndrome (POTS) is commonly found in patients with mast cell disease. However, POTS itself can have similar symptoms to mast cell disease. Palpitations, blood pressure abnormalities, sweating, anxiety, nausea, and headaches are some symptoms both POTS and mast cell disease have. There are also other forms of dysautonomia which mimic the presentation of mast cell disease.

Achlorhydria is a condition in which the stomach does not produce enough acid to break down food properly. This can cause a lot of GI pain, malabsorption, anemia, and weight loss.

Hereditary angioedema and acquired angioedema are conditions that cause a person to swell, often severely. Swelling may affect the airway and can be fatal if the airway is not protected. Swelling within the abdomen can cause significant pain and GI symptoms like nausea and vomiting.

Gastroparesis is paralysis of the stomach. People with GP often experience serious GI pain, vomiting, nausea, diarrhea or constipation, bloating and swelling.

Inflammatory bowel diseases and irritable bowel syndrome can all cause GI symptoms identical to what mast cell patients experience.

This list is not exhaustive. There are many other diseases that can look similar to mast cell disease. These are the ones I have come across most commonly.

For more detailed reading, please visit the following posts:

Gastroparesis: Part 1
Gastroparesis: Treatment (part 2)
Gastroparesis: Diabetes and gastroparesis (Part 3)
Gastroparesis: Post-surgical gastroparesis (Part 4)
Gastroparesis: Less common causes (Part 5)
Gastroparesis: Autonomic nervous system and vagus nerve (Part 6)
Gastroparesis: Idiopathic gastroparesis (Part 7)

Food allergy series: Food related allergic disorders
Food allergy series: FPIES (part 1)
Food allergy series: FPIES (part 2)
Food allergy series: Eosinophilic colitis
Food allergy series: Eosinophilic gastrointestinal disease (part 1)
Food allergy series: Eosinophilic gastrointestinal disease (part 2)
Food allergy series: Eosinophilic gastrointestinal disease (part 3)
Food allergy series: Eosinophilic esophagitis (Part 1)
Food allergy series: Eosinophilic esophagitis (Part 2)
Food allergy series: Eosinophilic esophagitis (Part 3)

Angioedema: Part 1
Angioedema: Part 2
Angioedema: Part 3
Angioedema: Part 4

Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 1
Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 2
Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 3
Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 4
Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 5
Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 6
Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 7

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 56

70. What is premedication and when should I do it?

Premedication is taking extra medication in advance of doing something that you expect to trigger your mast cells. The current premedication protocol for mast cell patients is as follows:
Prednisone 50mg orally (20mg for children under 12): 24 hours and 1-2 hours before procedure
• Diphenhydramine 25-50mg orally (12.5 mg for children under 12) OR hydroxyzine 25mg orally, 1 hour before procedure
• Ranitidine 150mg orally (20mg for children under 12) 1 hour before procedure
• Montelukast 10mg orally (5mg for children under 5) 1 hour prior to procedure

This protocol was developed for the Mastocytosis Society by Dr. Mariana Castells and the original can be found here.

This premedication protocol uses medications to interfere with the molecules mast cells release as well as medication to decrease the amount of molecules mast cells make and release. Diphenhydramine (called Benadryl in the US) stops histamine from getting to the H1 histamine receptors on the outsides of many cells. Ranitidine stops histamine from getting to the H2 histamine receptors on the outsides of many cells. In these ways, these medications can help to stop symptoms from histamine released by mast cells.
In a similar way, montelukast stops leukotrienes from getting to receptors on cells. This helps to curb some of the symptoms that occur when leukotrienes are released by mast cells.

Prednisone is a glucocorticoid, commonly called referred to as a “steroid.” This medication suppresses the production and release of inflammatory molecules by mast cells and other immune cells. Importantly, this medication can take hours to achieve maximum effect. This is why the first dose is the day before the event for which you are premedicating. By being dosed again a couple of hours before the event, it can also provide some additional protection for delayed reactions.

It is important to know that this premedication protocol may need to be changed to achieve the most effective protocol for individual patients. These recommendations are general and are not based upon study or clinical trial data.

This procedure is intended to be used for all major and minor medical procedures, including imaging tests like x-rays and MRIs, whether or not they use contrast. However, many patients find some benefit in premedicating for other types of events as well, such as flying, childbirth, and days of planned elevated physical or emotional stress. Patients should discuss what sorts of events are appropriate to premedicate for with a knowledgable provider.

For more detailed reading, please visit the following post:
Premedication and surgical concerns in mast cell patients

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 55

69. What routine monitoring should mast cell patients receive?

There are not yet routine testing recommendations for MCAS patients, but there are some for mastocytosis patients. Many doctors use the mastocytosis recommendations to monitor their MCAS patients in the absence of specific MCAS guidelines.

Mastocytosis patients should monitor tryptase level annually. In mastocytosis patients, tryptase level is often a good marker for how many mast cells are in the body (although this is not always true.) If a patient’s tryptase is increasing over time, the provider will need to check other things to see if their disease is moving to a more serious disease category.

DEXA scans measure bone density. Osteoporosis is a common complication of systemic mastocytosis. Patients should receive regular osteoporosis screening, even if they are young.

Mastocytosis patients usually receive routine bloodwork annually that includes a complete blood count (CBC), which counts the amount of blood cells a person has; and a metabolic panel, which looks at how well the liver and kidneys are working.

Repeat biopsies are usually only done if the result will change treatment in some way. Most patients with systemic mastocytosis are diagnosed based upon bone marrow biopsies. These don’t usually need to be repeated unless tryptase level increases sharply or there are unusual results in routine blood count testing. Increasing tryptase can indicate that the body is making more mast cells much faster, which is sometimes linked to a more serious disease category. Unusual blood cell counts can indicate not just too many abnormal mast cells, but also other bone marrow conditions sometimes seen in mast cell patients, like myelofibrosis and essential thrombocythemia.

Patients with cutaneous mastocytosis are diagnosed by skin biopsy. There is not usually a need to repeat a skin biopsy for patients with CM.

Patients with systemic mastocytosis are usually diagnosed by bone marrow biopsy but can also be diagnosed as a result of a positive biopsy in any organ that is not the skin. A person can be diagnosed with SM via a GI biopsy.

GI biopsies are a little different than bone marrow biopsies in that there are sometimes reasons to repeat them. GI biopsies may be repeated to see if the general inflammation in the GI tract is improved or worsened. The provider may also be interested in whether or not the amount of mast cells in the GI tract has decreased. The result of GI biopsies often change treatment options so it is not unusual to repeat them. However, unlike bone marrow biopsies, repeated GI biopsies do not tell the provider if the mastocytosis is moving toward a more serious disease category or not.

MCAS patients are diagnosed based upon positive tests for molecules that indicate mast cells are overly active, like n-methylhistamine, and D2- or 9a,11b-F2 prostaglandins. Once the patient is diagnosed, there’s not a clear rationale for repeating these tests, although some providers do for their own information. Some providers like to check prostaglandin levels to see if treatment to stop mast cells from making prostaglandins (like use of aspirin or other NSAIDs) is helping.

However, it is important to understand that the level of mast cell mediators is not associated with symptoms. A person who has a normal level of 9a,11b-F2 prostaglandin may have the same symptoms as a person above the normal level, who may have the same symptoms as a person who has three times the normal level. For this reason, many providers consider these mediator tests to be less about the numerical value of the test and more about whether it’s normal or high, period.

For more detailed reading, please visit the following post:
The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 5
The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 6
The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 7
The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 8
The Provider Primer Series: Diagnostic criteria of systemic mastocytosis and all sub variants
The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)
The Provider Primer Series: Mediator testing
The Provider Primer Series: Mast cell activation syndrome (MCAS)

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 54

68. How does mast cell disease affect pregnancy?

One of the things mast cells normally do in the body is regulate the female reproductive cycle. Mast cells in the endometrium, the uterine lining that is shed during menstruation, become activated and release mediators in the days before and during menstruation. Many of the symptoms of premenstrual syndrome (PMS) occur because of mast cell degranulation. These symptoms include things like cramps and bloating.

Because mast cells are involved in controlling the reproductive cycle, they are responsive to the effects of hormones like estrogen and progesterone. In particular, estrogen can directly cause mast cell degranulation.

In some allergic conditions like asthma, patients often have flares right before or during their menstrual period. This is often the case with mast cell patients as well. The change in hormones, the built in mast cell activation, and the bleeding, can all cause mast cell symptoms.

A study on the effects of the pregnancy on mastocytosis found that there was a lot of variability in what patients experienced. 33% of women had symptom improvement during pregnancy. In these women, their symptoms mostly improved beginning in the first trimester and continued throughout their pregnancy. 45% of patients had no change in symptoms during pregnancy. The remainder had worsened symptoms.

Mastocytosis did not seem to affect the outcome of pregnancy compared to the normal population. Premedication was recommended at the start of labor. Many women safely received anesthesia. In women who reacted, 2/3 had not premedicated. Induction of labor with medication was well tolerated. Both vaginal delivery and Caesarean section was performed safely on women with mastocytosis. The frequency of Caesarean section, miscarriage, prematurity and low birth weight were similar to the general population.

In some instances, severe allergic reactions and anaphylaxis can induce early labor, so patients should be aware of this risk.  Histamine can trigger uterine contractions.

An important thing to consider is that mast cell patients may have to change or stop some of their medications while pregnancy to avoid effects upon the fetus. In particular, the use of epinephrine is discouraged in pregnancy because it causes uterine contractions. Mast cell patients should have an alternative plan for anaphylaxis that excludes epinephrine where possible. Any mast cell patient who is pregnant or considering becoming pregnant should have detailed discussions with their providers about it.

For more detailed reading, please visit the following posts:
Pregnancy in mastocytosis
Effects of estrogen and progesterone and the role of mast cells in pregnancy

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 53

66. How long does it take to react to a trigger?

There isn’t a straight answer to this. The time it takes to react to a trigger is hugely variable. It depends upon the trigger; the strength of the reaction it triggers; the patient; the medications they take; their lifestyle; and other activities that may increase or decrease reactivity. As we have discussed before, the reaction you see from a trigger is often the cumulative result of how much histamine you have circulating at the time, which can be affected by many other things. Reactions can happen immediately or several days later. It is not unusual for mast cell patients to react days later, especially to things they have ingested. This logically makes sense to me as a result of the trigger still being in the GI tract but there is still not definitive proof that explains why you can react days later.

67. What physical things trigger mast cells?

A lot of physical things trigger mast cells. The exact reasoning for why some of these things trigger mast cells is still not well understood. However, these triggers are documented in literature, often as triggers for physical urticaria (hives caused by physical triggers) and/or angioedema (swelling). While reactions to these triggers often start in the skin, the mast cell activation can spread to other mast cells elsewhere in the body. Additionally, patients may not have skin symptoms but have reactions to the following triggers.

Heat and cold can both activate mast cells. Hot water and cold water are both common triggers. Water in general is a trigger for some. Emotional stress is activating, as is various forms of physical stress, including exercise, surgery, physical trauma, infection, or increased activity of another disease. Sweat can be a trigger, regardless of whether the patient is sweating from exercise, heat, or something else. Pressure on the body, even mild pressure, can cause mast cells to release chemicals. Sunlight and vibrations are also known triggers. Mast cell patients are recommended to premedicate before any medical procedure, including imaging like ultrasounds, X-rays or MRIs, as patients have reported activation from these things. Changes in barometric pressure, such as from a change in weather or a storm, are often reported by patients to cause symptoms.

For more detailed reading, please visit the following posts:
Chronic urticaria and angioedema: Part 2

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 52

64. Why do I always have dark circles around my eyes?

It is not unusual for people who are having allergic reactions to have “allergic shiners.” Allergic shiners are dark circles around the eyes, especially evident under the eye where they may look like “bags.” There is not a definitive reason for why they occur but it is thought to be the result of poor circulation near the sinuses. In these patients, nasal congestion is common. This interferes with the normal circulation of blood near the sinuses. The blood “backs up” and pools in the blood vessels nearby. These blood vessels expand to accommodate the extra blood in them. Since the skin is very thin around the eyes, when these blood vessels expand, you can see the blood through the skin, giving an appearance of a dark circle under the eye.

65. Does mast cell disease cause hair loss?

Yes, sometimes. Mast cells release huge amount of prostaglandin D2 (PGD2). They release so much PGD2 that testing for it in urine is one of the more common steps in diagnosing mast cell disease. PGD2 has been linked to hair loss, especially in the scalp of men who experience hair loss. Exactly how PGD2 causes hair loss is still heavily researched, but it seems to stop hair follicles from maturing normally.

PGD2 causes an array of far reaching symptoms. For this reason, many mast cell patients take medications or supplements to decrease mast cell release of PGD2. Aspirin and other NSAIDs are often used. These medications interfere with specific molecules called COX-1 and COX-2. Without these molecules, cells are not able to make prostaglandins like PGD2. There are a number of supplements that can also interfere with one or both of the COX molecules. Curcumin or turmeric is sometimes used for this purpose. (Keep in mind that aspirin and NSAIDs are NOT safe for many patients. Patients should never add a medication or supplement without discussing it with a provider that knows their specific health situation.)

Some medications commonly used by mast cell patients can also contribute to hair loss. H2 antihistamines can sometimes cause hair loss. Some NSAIDS may also do this, even though they should help stop hair loss as I mentioned above. In more serious instances of mast cell disease, patients may need immunosuppressants, interferon therapy, or chemotherapy. These can cause varying degrees of hair loss, too. Steroids like prednisone may also decrease hair production.