Skip to content

asthma

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 61

75. What other diseases and disorders are commonly associated with mast cell disease?

I often joke that it would be easier to list what conditions are not commonly associated with mast cell disease because so many conditions occur alongside it. However, there are some conditions that you see a lot in the mast cell population relative to others. In every instance, mast cell disease has the potential to irritate the other condition and vice verse.

Clonal hematologic disorders. Systemic mastocytosis is so frequently accompanied by other blood disorders that it has a diagnosis specifically for this phenomenon: systemic mastocytosis with associated hematologic disorder (SM-AHD). It is estimated that up to 40% of patients with SM eventually develop another clonal hematologic disorder. A clonal hematologic disorder is a condition in which your bone marrow makes too many blood cells. Examples include chronic myelogenous leukemia, acute myeloid leukemia, polycythemia vera, myelofibrosis, and essential thrombocythemia.

Unlike mastocytosis, MCAS can occur secondarily to lots of conditions. In some instances, it’s not clear if the MCAS is secondary to a condition or the condition is secondary to MCAS or neither.

Heritable connective tissue diseases. Ehlers Danlos Syndrome (EDS), is the most common connective tissue disease in the mast cell population. There are multiple types of EDS. While hypermobility type EDS (formerly called Type III) is the most common in MCAS patients, other forms occur also. Other connective tissue diseases seen in mast cell patients include Marfan Syndrome and Loeys-Dietz Syndrome.

Dysautonomia. Dysautonomia is a condition in which your body’s autonomic nervous system doesn’t regulate essential bodily functions correctly. POTS is the most common form of dysautonomia found in mast cell patients but other forms occur, too.

Mast cell patients commonly have MCAS, EDS and POTS together. They cooccur so commonly that some experts think that that this presentation is actually one overarching disease rather than three separate ones affecting mast cell patients.

Eosinophilic GI disease. Mast cells are closely related to eosinophils. They activate eosinophils and eosinophils activate them. Mast cell patients sometimes have eosinophil GI disease where eosinophils activate to lots of triggers and damage the GI tract.

Immunodeficiency. Conditions that specifically impair a person’s immunity, especially those that affect T or B cells, like SCID or CVID, are not unusual in mast cell patients.

Gastrointestinal disease. Mast cells normally live in the GI tract so they are very sensitive to GI inflammation. MCAS can occur secondarily to lots of GI diseases. Crohn’s, ulcerative colitis, inflammatory bowel disease, and irritable bowel syndrome are examples. GI disorders that specifically affect motility are also seen in mast cell disease, like gastroparesis and chronic intestinal pseudoobstruction.

Allergies. Some mast cell patients have true IgE allergies or other allergic disorders like atopic dermatitis.

Autoimmune disease. Autoimmune disease is more common in MCAS patients than in SM patients. The specific disorder could be virtually any autoimmune condition, including rheumatoid arthritis, lupus, Hashimoto’s thyroiditis, autoimmune urticaria, and many others.

Adrenal insufficiency. The body’s mechanisms for produce stress hormones like cortisol can become dysregulated in mast cell patients. This results in a situation in which the body does not make enough steroids of its own to take care of the body during periods of stress. Patients with adrenal insufficiency are dependent upon daily steroids to stay safe.

Chiari malformation. This condition affects the space around a person’s brainstem, causing a wide array of symptoms. Some patients have surgery for this condition.

Asthma. It is difficult to draw an exact line where mast cell disease ends and asthma begins in mast cell patients as the symptoms can be virtually identical.

This list is not exhaustive. Many other conditions sometimes occur in mast cell patients.

For additional reading, please visit the following posts:
The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 31
The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 32

Immunoglobulin free light chains: A possible link between autoimmune disease and mast cell activation

An antibody (also called an immunoglobulin) is shaped like a Y.  The base of the Y is called the Fc region.  The arms of the Y are made of pieces called light chains and heavy chains.  Light chains (described as K or λ) have variable sequences that allow the complete antibody to stick to specific things, like bacteria or allergens.  Light chains are part of how your body fights infections and responds to allergens.  Importantly, free light chains do not work as antibodies.  They are not able to stick to the target the way the total antibody can.

Antibodies are made by white blood cells called plasma cells, which are B cells that circulate and release antibodies as needed.  When producing antibodies, B cells normally make more light chains than heavy chains.  Only about 60% of the light chains made are needed to produce antibodies.  The rest of the light chains are released into plasma and are present there for 2-6 hours, until they are cleared by kidneys.  Light chains that are released into plasma are called immunoglobulin free light chains, shortened as Ig-fLCs.

Another way Ig-fLCs are formed is when they antibody is bound and degraded by a cell.  Antibodies bind things like allergens.  Once they bind allergens (or something else), the antibodies can then bind to receptors on the outside of cells to tell the cells what they found.  Once the antibody is bound to the receptor, it can be partially broken down.  However, light chains are not damaged in this process, and they may be released back into serum.

Ig-fLCs are the subject of ongoing research in various disease models.  Ig-fLC elevation has been linked to a number of inflammatory conditions, including autoimmune diseases.  Systemic lupus erythematosus (SLE) patients demonstrate a significant elevation of Ig-fLCs in urine 4-8 weeks prior to a symptomatic flare.  SLE is an antibody driven disease and the extra Ig-fLCs may be produced as a byproduct of making more autoantibodies in advance of a flare.  In this capacity, it would demonstrate hyperactivity of the B cells that make the autoantibodies.

Ig-fLCs were also found to be elevated in 1/3 patients with rheumatoid arthritis and 1/5 patients with systemic sclerosis.  A number of cancers also induce elevation of Ig-fLCs.

Ig-fLCs are involved in a number of allergic processes.  In allergic asthma animal models, Ig-fLCs have been found to induce bronchoconstriction and acute mast cell degranulation.  Using an experimental light chain antagonist can prevent this reaction.  Κ light chains are elevated in serum of asthmatics, regardless of whether or not the asthma is atopic is nature. λ light chains are not elevated in this population.

Ig-fLCs are also involved in other allergic mouse models, including contact dermatitis, food allergy and inflammatory bowel disease.  In these models, the Ig-fLCs can sensitize mast cells to allergens so that exposure to the allergen causes mast cell activation and degranulation.

Ig-fLCs have also been implicated in mast cell dependent colitis and inflammatory bowel diseases such as ulcerative colitis and Crohn’s.  It is believed that antigen specific Ig-fLC sensitizes mast cells to cause activation and degranulation.  This is especially important because it describes a mechanism that occurs in the absence of IgE.  Serum κ and λ light chains are elevated in Crohn’s models and using an experimental blocker prevents these bowel symptoms.  Research has indicated that the IgE, IgG and paired Ig-like receptor A receptors are not involved in binding Ig-fLCs in these models.

Many mast cell patients have a primary inflammatory condition, such as IBD or autoimmune disease.  Mast cell activation via Ig-fLCs is, to me, the most plausible explanation for this relationship.  Currently, mast cell activation by Ig-fLCs has not been demonstrated in humans, though present in many animal models.  However, Ig-fLC correlation to autoimmune diseases such as lupus has been shown in humans.

References:

Kraneveld A, et al. Elicitation of allergic asthma by immunoglobulin free light chains. PNA 2005: 102(5); 1578-1583.

Thio M, et al. Antigen binding characteristics of immunoglobulin free light chains: crosslinking by antigen is essential to induce allergic inflammation. PLoS One 7(7): e40986.

Rijnierse A, et al. Ig-free light chains play a crucial role in murine mast cell-dependent colitis and are associated with human inflammatory bowel diseases. J Immunol 2010; 185:653-659.

Gottenberg JE, et al. Serum immunoglobulin free light chain assessment in rheumatoid arthritis and primary Sjogren’s syndrome. Ann Rheum Dis 2007; 66:23-27.

Aggarwal R, et al. Serum free light chains as biomarkers for systemic lupus erythematosus disease activity. Arthritis Care and Research 2011: 63(6): 891-898.

Master table of de novo mast cell mediators

 

Mediator Symptoms Pathophysiology
b-FGF (basic fibroblast growth factor) Angiogenesis, proliferation, wound healing, binds heparin
GM-CSF (granulocyte macrophage colony stimulating factor) Rheumatoid arthritis Induces stem cells to make granulocytes and monocycles
IL-1a Fever, insulin resistance, inflammatory pain Activates TNFa, stimulates production of PGE2, nitric oxide, IL-8 and other chemokines
IL-1b Pain, hypersensitivity Autoinflammatory syndromes, regulates cell proliferation, differentiation and death, induces COX2 activity to produce inflammatory molecules
IL-2 Itchiness, psoriasis Regulates T cell differentiation
IL-3 Drives differentiation of several cell types, including mast cells, and proliferation
IL-4 Airway inflammation, allergic asthma Regulates T cell differentiation
IL-5 Eosinophilic allergic disease Activates eosinophils, stimulates proliferation of B cells and antibody secretion, heavily involved in eosinophilic allergic disease
IL-6 Fever, acute phase inflammation, osteoporosis Inhibits TNFa and IL-1, stimulates bone resorption, reduces inflammation in muscle during exercise
IL-9 Asthma, bronchial hypersensitivity Increases cell proliferation and impedes apoptosis of hematopoietic cells
IL-10 Regulates the JAK-STAT pathway, interferes with production of interferons and TNFa.   Exercise increases levels of IL-10
IL-13 Airway disease, goblet cell metaplasia, oversecretion of mucus Induces IgE release from B cells, links allergic inflammation to non-immune cells
IL-16 Allergic asthma, rheumatoid arthritis, Crohn’s disease Attracts activated T cells to inflamed spaces,
IL-18 Linked to several autoimmune and inflammatory conditions, including Hashimoto’s thyroiditis Induces release of interferon-g, causes severe inflammatory reactions
Interferon-a Flu like symptoms, malaise, muscle soreness, fever, sore throat, nausea Inhibition of mast cell growth and activity
Interferon-b Flu like symptoms, malaise, muscle soreness, fever, sore throat, nausea Inhibition of mast cell growth and activity
Interferon-g Granuloma formation, chronic asthma Induces production of nitric oxide, IgG2a and IgG3 from B cells, increases production of histamine, airway reactivity and inflammation
Leukotriene B4 Mucus secretion, bronchoconstriction, vascular instability, pain Draws white cells to site of inflammation
Leukotriene C4 Mucus secretion, bronchoconstriction, vascular instability, pain Draws white cells to site of inflammation
MCP-1 Neuroinflammation, diseases of neuronal degeneration, glomerulonephritis Draws white blood cells to inflamed spaces,
MIF (macrophage migration inhibitory factor) Regulate acute immune response, release triggered by steroids
MIP-1a (macrophage inflammatory protein) Fibrosis Activates granulocytes, nduces release of IL-1, IL-6 and TNFa
Neurotrophin-3 Nerve growth factor
NGF (nerve growth factor) Regulates survival and growth of nerve cells, suppresses inflammation
Nitric oxide Bruising, hematoma formation, excessive bleeding Vasodilation, inhibition of platelet aggregation
PDGF (platelet derived growth factor) Platelet growth factor, growth of blood vessels, wound healing
Platelet activating factor Constriction of airway; urticaria; pain Platelet activation and aggregation, vasodilation
Prostaglandin D2 Flushing, mucus secretion, bronchoconstriction, vascular instability, mixed organic brain syndrome, nausea, abdominal pain, neuropsych symptoms, nerve pain Inflammation, pain, bronchoconstriction
Prostaglandin E2 Muscle contractions, cough Draws white blood cells to site of inflammation
RANTES (CCL5) Osteoarthritis Attracts white cells to inflamed spaces, causes proliferation of some white cells
SCF (stem cell factor) Regulates mast cell life cycle, induces histamine release
TGFb (transforming growth factor beta) Bronchial asthma, heart disease, lung fibrosis, telangiectasia, Marfan syndrome, vascular Ehlers syndrome syndrome Regulates vascular and connective tissues
TNFa (tumor necrosis factor) Fever, weight loss, fatigue Regulates death of cells and acute inflammation
VEGF (vascular endothelial growth factor) Bronchial asthma, diabetes Angiogenesis, draws white cells to inflamed spaces, vasodilation

 

 

Exercise and mast cell activity

Research on exercise induced bronchoconstriction represents a large body of work through which we can draw conclusions about mast cell behavior as affected by exercise.

Exercise has been found in a number of studies to induce mast cell degranulation and release of de novo (newly made) mediators. One study found that levels of histamine, tryptase and leukotrienes were increased following exercise in sputum of people with exercise induced bronchoconstriction. This same study found that in these patients, prostaglandin E2 and thromboxane B2 was decreased in sputum. Treating with montelukast and loratadine suppressed release of leukotrienes and histamine during exercise.

One important area of research is the interface between being asthmatic and being obese. Adipose tissue is known to release inflammatory molecules called adipokines. In particular, the adipokine leptin has been studied for its role in bronchoconstriction following exercise. Leptin (I did a previous post on leptin, which is also called the obesity hormone) enhances airway reactivity, airway inflammation and allergic response. It can also enhance leukotriene production. This last fact is interesting because obese asthmatics are less likely to respond to inhaled corticosteroids when compared to lean asthmatics, but both respond similarly to anti-leukotriene medications like montelukast.

LTE4 was found to be significantly higher in the urine of both obese and lean asthmatics following exercise. It was not increased in either obese non-asthmatics or healthy controls. Additionally, the level of LTE4 was significantly higher in obese asthmatics compared to lean asthmatics. In this same study, urinary 9a, 11b-PGF2 was elevated in both lean and obese asthmatics, but not in obese or healthy controls. The 9a, 11b-PGF2 level was also higher in obese asthmatics than lean asthmatics. The elevated LTE4 and 9a, 11b-PGF2 were found in urine testing rather than in sputum, indicating that these chemicals did not stay local to the lungs and airway.

It is thought that the high levels of leptin found in asthmatics drive the manufacture and release of leukotrienes and prostaglandins from mast cells, epithelial cells or eosinophils during exercise. Though the data are stacking up to look like this is the case, there has not yet been a definitive causal link established.

 

References:

Teal S. Hallstrand, Mark W. Moody, Mark M. Wurfel, Lawrence B. Schwartz, William R. Henderson, Jr., and Moira L. Aitken. Inflammatory Basis of Exercise-induced Bronchoconstriction. American Journal of Respiratory and Critical Care Medicine, Vol. 172, No. 6 (2005), pp. 679-686.

Hey-Sung Baek, et al. Leptin and urinary leukotriene E4 and 9α,11β-prostaglandin F2 release after exercise challenge. Volume 111, Issue 2, August 2013, Pages 112–117

 

Histamine depletion in exercise

A long known and often repeated finding is that regular exercise can be protective against asthma. This finding was published in 1966 by a group that found the airways of asthmatics grew progressively less reactive following intervals of exercise. This finding was confirmed by several studies that followed. At the time, the reason why exercise protected against reactive airways was unclear, but an early hypothesis was that mediators were depleted after the initial round of exercise and that time was required to restore them.

In the 1980’s, there was a wave of research around the role of histamine in airway reactivity of asthmatics. There were a few competing theories at this point for why asthmatics became less reactive following exercise: depletion of mediators, mainly histamine from mast cells; that bronchial smooth muscle became less responsive to stimulation by histamine via the H1 receptor; and that release of catecholamines (such as epinephrine) by exercise suppresses bronchoconstriction. A number of studies made relevant findings.

Histamine is known to be released in the lungs due to exercise. It is also known to become depleted and quickly metabolized. When exposed to histamine, asthmatics recover quickly from the ensuing bronchoconstriction. Some asthmatic patients show an increase in plasma histamine during exercise.

Plasma epinephrine does not rise in asthma patients as a result of exercise, or at the very least is metabolized almost immediately, and thus is unlikely to be protective. Bronchial smooth muscle was not found to become less responsive to histamine. This was demonstrated in a study that compared repeated inhalation of histamine (such as might be induced by exercise) with actual repeated exercise. This study found that repeated exercise diminished airway reactivity, while repeated inhalation of histamine did not.

Another report indicated that inhalation of cromolyn before exercise can prevent or mitigate exercise induced asthma in most patients. Administration of H1 inverse agonists was found to offer similar protection.

A more recent study (2012) looked at the role of histamine in fatigue from exercise. Histamine is now known to be involved in regulation of oxygen/carbon dioxide exchange, which is important in exercise. In mice that were persistently exercised, the level of histidine decarboxylase was increased. HDC is the enzyme that makes and immediately releases histamine in response to an immediate need. This is different from degranulation, in which histamine is made ahead of time and stored inside the cell until needed.

This study found that treating the mice with an H1 antihistamine, H2 antihistamine, or HDC inhibitor decreased endurance in the mice. Mice deficient in HDC or H1 receptors also had less endurance. This means that histamine is partly responsible for inducing tolerance to exercise and that blocking action of histamine causes fatigue to set in more quickly.

Treatment with fexofenadine, an H1 antihistamine, decreased levels of nitric oxide and glycogen in the muscles of exercised mice. Taken together, these findings mean that histamine protects against fatigue from exercise; that this effect is achieved via H1 receptors and production of nitric oxide; and that at least some of this histamine is provided by immediate production and release of histamine via HDC. This means that your body does not simply release its histamine stores in response to exercise; it makes it on the fly so as not to exhaust its supply.

 

References:

Hahn, Allan G., et al. Histamine reactivity during refractory period after exercise induced asthma. Thorax 1984; 39: 919-923.

Niijima-Yaoita, Fukie, et al. Roles of histamine in exercise-induced fatigue: favouring endurance and protecting against exhaustion. Biol Pharm Bull 2012; 35; 91-97.

Schoeffel, Robin E., et al. Multiple exercise and histamine challenge in asthmatic patients. Thorax, 1980, 35, 164-170.

Graham P, Kahlson G, Rosengren E. Histamine formation in physical exercise, anoxia and under the influence of adrenaline and related substances. J. Physiol., 172, 174—188 (1964).

McNeill RS, Nairn JR, Millar JS, Ingram CG.Exercise-induced asthma. Q J Med 1966; 35: 55-67.

 

Prostaglandin E2, mast cells and asthma

In the mast cell community, we talk about prostaglandins a lot. Most of the time we are talking about prostaglandin D2, as it is well produced by mast cells. However, there are a number of other prostaglandins that can affect inflammation and disease processes.

Prostaglandin E2 has been inflammatory and anti-inflammatory effects in the body. It is the prostaglandin responsible for inducing fevers. It is also a vasodilator, which contributes in some models to swelling. It relaxes smooth muscle and interferes with release of norepinephrine. PGE2 can cause hyperalgesia, or exaggerated pain response, a hallmark of inflammation. It regulates blood pressure, body temperature, sleep-wake pattern, kidney function and peristalsis (movement through the GI tract), and intestinal secretion.

It activates T cells and favors development of certain types of T cells that participate in the allergic response. It also modulates B cell activity and allergic reactions. However, it makes other immune cells less active. PGE2 simulates bone resorption and is important in reproduction, softening the cervix and causing uterine contractions.

PGE2 has a number of interactions with mast cells. In mast cells from bone marrow or peritoneal cavity, it induces histamine, IL-6 and GM-CSF release. However, in mast cells from progenitor cells or in the lung, it decreases release of leukotrienes, TNF and histamine. PGE2 acts on mast cells to reduce expression of PGE receptors, EP2 and EP3. PGE2 can enhance IgE production by B cells but also interferes directly with mast cell degranulation stimulated by IgE.

Prostaglandin E2 has a very unusual relationship with allergic inflammation. In contrast to prostaglandin D2, which constricts the airway, PGE2 actually relaxes the smooth muscle and opens the airway. Importantly, PGE2 retains this ability regardless of the trigger for reactive airway – allergen, asthma or exercise. Curiously, it was observed early on to cause coughing.

An interesting fact is that administration of medications that interfere with COX-2 (like Celebrex or aspirin) can worsen airway function and increase inflammation. This is of particular note in asthma patients. It is thought that this may be due to reducing production of PGE2.

 

References:

Emanuela Ricciotti, Garret A. FitzGerald. Prostaglandins and Inflammation. Arterioscler Thromb Vasc Biol. 2011; 31: 986-1000.

Rosa Torres, César Picado, Fernando de Mora. The PGE2–EP2–mast cell axis: An antiasthma mechanism. Molecular Immunology 63 (2015) 61–68

Daniel F. Legler, Markus Bruckner, Edith Uetz-von Allmen, Petra Krause. Prostaglandin E2 at new glance: Novel insights in functional diversity offer therapeutic chances. The International Journal of Biochemistry & Cell Biology 42 (2010) 198–201.

Mast cell mediators: Prostaglandin D2 (PGD2)

Prostaglandin D2 (PGD2) is the predominant prostaglandin product released by mast cells. It is found prevalently in the central nervous system and peripheral tissues, where it performs both inflammatory and normal processes. In the brain, PGD2 helps to regulate sleep and pain perception. PGD2 can be further broken down into other prostaglandins, including PGF2a; 9a, 11b-PGF2a (a different shape of PGF2a), and forms of PGJ. 9a, 11b-PGF2a shares the same biological functions as PGD2. Both of these can be tested for in 24 hour urine test as markers of mast cell disease.

PGD2 is a strong bronchoconstrictor. It is 10.2x more potent in this capacity than histamine and 3.5x more potent than PGF2a. It has been associated with inflammatory and atopic conditions for many years. Presence of allergen activates PGD2 production in sensitized people. In asthmatics, bronchial samples can achieve over 150x the level of PGD2 compared to controls. Elevated PGD2 has been associated with chronic coughing.

PGD2 is a driver of inflammation in many settings. It acts on bronchial epithelium to cause production of chemokines and cytokines. It also brings lymphocytes and eosinophils to the airway, which induces airway inflammation and hyperreactivity in asthmatics. PGD2 may also inhibit eosinophil cell death, resulting in further inflammation.

An interesting facet of PGD2 is its role in nerve pain. It has been found that PGD2 is produced by microglia in the spine after a peripheral nerve injury. These cells make more COX-1, which then makes PGD2. Newer COX-2 inhibiting NSAIDs do not affect nerve pain in mouse models, but older NSAIDs that inhibit COX-1 and COX-2 reduce neuropathy.

PGD2 is found to inhibit inflammation in other settings. It can reduce eosinophilia in allergic inflammation in mouse models. Additionally, once the acute phase of inflammation is over and it is resolving, administering a COX-2 inhibitor actually makes the inflammation worse. This indicates that PGD2 may be important in resolving inflammation in some processes.

Aspirin is commonly used in mast cell patients to inhibit prostaglandin production. PGD2 is primarily manufactured by COX-2, but the pathway that evokes neuropathy uses COX-1. There are a number of COX-1 and COX-2 inhibitors available.

In mast cell patients, PGD2 is probably most well known for causing flushing. This happens due to dilation of blood vessels in the skin. Due to a well characterized response to aspirin, this is generally the first line medication choice. Some salicylate sensitive mast cell patients undergo aspirin desensitization to be able to use this medication.

 

References:

Emanuela Ricciotti, Garret A. FitzGerald. Prostaglandins and Inflammation. Arterioscler Thromb Vasc Biol. 2011; 31: 986-1000.

Matsuoka T, Hirata M, Tanaka H, Takahashi Y, Murata T, Kabashima K, Sugimoto Y, Kobayashi T, Ushikubi F, Aze Y, Eguchi N, Urade Y, Yoshida N, Kimura K, Mizoguchi A, Honda Y, Nagai H, Narumiya S. Prostaglandin D2 as a mediator of allergic asthma. Science. 2000;287: 2013–2017.

G Bochenek, E Nizankowska, A Gielicz, M Swierczynska, A Szczeklik. Plasma 9a,11b-PGF2, a PGD2 metabolite, as a sensitive marker of mast cell activation by allergen in bronchial asthma. Thorax 2004; 59: 459–464.

Victor Dishy, MD, Fang Liu, PhD, David L. Ebel, BS, RPh, George J. Atiee, MD, Jane Royalty, MD, Sandra Reilley, MD, John F. Paolini, MD, PhD, John A. Wagner, MD, PhD, and Eseng Lai, MD, PhD. Effects of Aspirin When Added to the Prostaglandin D2 Receptor Antagonist Laropiprant on Niacin-Induced Flushing Symptoms. Journal of Clinical Pharmacology, 2009; 49: 416-422

Effects of Platelet Activating Factor (PAF) in asthma and anaphylaxis

PAF is released by many different cells, including eosinophils, mast cells, neutrophils, monocytes, macrophages and endothelial cells. PAF receptors are expressed by platelets, monocytes, mast cells, neutrophils, and eosinophils. T and B cells do not express PAF receptors, but PAF can stimulate them to migration of these cells. PAF receptors are found to be increased in eosinophils of asthma patients. PAF receptors are also elevated in lungs of asthmatic patients. PAF can activate mast cells and basophils, causing histamine release. One study proposed the PAF activation of basophils may play a role in aspirin sensitivity in asthma patients.

PAF is most well known for its effects on the airway. It causes constriction of the airway and can affect the way oxygen is brought into the lungs. However, it also has many other effects in the body, many of which affect anaphylaxis and severity thereof.

PAF activates eosinophils and neutrophils to degranulate. It also causes leukotriene C4 production by activated eosinophils in asthma patients, but not in normal patients. A PAF inhibitor has been observed to prevent eosinophil migration and leukotriene C4. Another PAF inhibitor was able to inhibit eosinophil activation by PAF. In activated neutrophils in asthma patients, PAF causes an increase in secretion of leukotriene B4 and increased 5-lipoxygenase activity.

PAF is a powerful signal for eosinophils to migrate toward the cell releasing PAF, and may be involved in inflammation resulting in eosinophilic infiltration. PAF can cause eosinophilic movement across endothelium and into airway. This behavior is increased during asthma attacks and can be minimized with steroids.

PAF injected into the skin causes a biphasic reaction with immediate hiving, then a delayed redness and pain reaction that causes eosinophilic infiltration. PAF also increases IL-6 production by macrophages, activates IL-4 production by T cells, and enhances IL-6 production by mononuclear cells in peripheral blood.

PAF has been heavily linked to asthma. One study found higher levels of PAF as well as lower level of the enzyme that inactivates PAF in plasma of asthmatic adults both during attacks and the rest of the time. When exposed to allergens, PAF level in blood rapidly increases. The large increases in PAF level upon exposure were ameliorated upon successful allergen immunotherapy (also known in the US as “allergy shots”).

PAF induced bronchoconstriction does not affect histamine release and is not alleviated by H1 receptor antihistamines. Inhaling PAF does not change plasma histamine level in asthmatics. Leukotrienes may behave as secondary mediators of PAF action. Zileuton attenuated systemic and respiratory effects of PAF, including airway constriction and changes in neutrophil behavior.

PAF level, and the level of the enzyme that metabolizes it, PAF-acetylhydrolase, is directly correlated to severity of anaphylaxis. Patients with grade I anaphylaxis have 2.5x as much PAF as controls; grade II, 5x; and grade III, 10x. PAF blockers are being investigated for use in this context. Rupatadine is available in some countries, and has H1 antihistamine and PAF blocking activity.

The exact nature of PAF’s activity in anaphylaxis is unclear. It has been shown to cause mast cell degranulation and increased production and release of prostaglandin D2. It can also amplify the response to IgE, making the allergic reaction worse. However, these effects were not seen in skin mast cells for unknown reasons. The source of PAF that acts on mast cells in anaphylaxis is unknown, but is thought to be at least partially from mast cells themselves.

 

References:

Kasperska-Zajac, Z. Brzoza, and B. Rogala. Platelet Activating Factor as a Mediator and Therapeutic Approach in Bronchial Asthma. Inflammation, Vol. 31, No. 2, April 2008.

Peter Vadas, M.D., Ph.D., Milton Gold, M.D., Boris Perelman, Ph.D., Gary M. Liss, M.D., Gideon Lack, M.D., Thomas Blyth, M.D., F. Estelle R. Simons, M.D., Keith J. Simons, Ph.D., Dan Cass, M.D., and Jupiter Yeung, Ph.D. Platelet-Activating Factor, PAF Acetylhydrolase, and Severe Anaphylaxis. N Engl J Med 2008; 358:28-35.

Vadas P, Gold M, Liss G, Smith C, Yeung J, Perelman B. PAF acetylhydrolase predisposes to fatal anaphylaxis. J Allergy Clin Immunol 2003;111: S206-S206.

Kajiwara N, Sasaki T, Bradding P, Cruse G, Sagara H, Ohmori K, Saito H, Ra C, Okayama Y. Activation of human mast cells through the platelet-activating factor receptor. J Allergy Clin Immunol. 2010 May; 125(5): 1137-1145.

Circadian rhythm of mast cells

The circadian clock (also called circadian rhythm) regulates many physiological activities including the sleep-wake cycle, metabolism, digestion and immune processes. It is essentially a system that tells cells in the body what to do based on a 24 hour cycle, which can be influenced by such things as light cues, sleep and medication. Many cell types in the body have been shown to maintain their own internal circadian clocks and to change their behavior based upon time. Mast cells and eosinophils have been shown to maintain their own internal clocks.

On a cellular level, the circadian clock is maintained by the expression of clock genes. Inside the cell, a protein called CLOCK attaches to another protein (BMAL1) and they initiate expression of several genes that regulate circadian rhythm in the cell. These genes are called Period 1, Period 2, Period 3, Cryptochrome 1 and Cryptochrome 2. The proteins made by those genes regulate the expression of other genes based upon time.

An interesting facet of allergic disease is the well established variation in symptom severity depending on the time of day. This is seen in a variety of allergic conditions, such as asthma and atopic dermatitis. Allergic symptoms, including those that affect pulmonary function, are worse between midnight and morning, with a ramping up of symptoms seen around 10pm. This worsening overnight often results in sleep disruptions and “morning attacks”, which affect rest and result in decreased quality of life for patients. This has been verified repeatedly both through mouse studies and in reports of human patients.

Circadian rhythm has been shown to affect mediator release in mast cells, and this has been shown to be regulated by the five genes listed above. If even one of those genes are mutated, the mediator release becomes uniform and does not shown the peaks and lows observed normally. Both tryptase and plasma histamine levels have been observed to have lower levels in the afternoon and to peak at night. A marker associated with degranulation (b-hexosaminidase) showed the same pattern.

There is currently no information available on how mast cells tell time in relation to the rest of the body, though it is thought that mast cells receive molecular signals that “start the clock”. Importantly, in mice that have had their adrenal glands removed, mast cells do not shown circadian rhythms in mediator release. This indicates that the signal that “starts the clock” comes to mast cells from the adrenal glands. Corticosterone is being investigated as the possible signal, as it has been shown to induce expression of at least two clock genes, Period 1 and Period 2.

 

References:

Silver, A.C., Arjona, A., Hughes, M.E., Nitabach, M.N., Fikrig, E., 2012. Circadian expres-sion of clock genes in mouse macrophages, dendritic cells, and B cells. BrainBehav. Immun. 3, 407–413.

Smolensky, M.H., Lemmer, B., Reinberg, A.E., 2007. Chronobiology and chronother-apy of allergic rhinitis and bronchial asthma. Adv. Drug Deliv. Rev. 9–10,852–882.

Baumann, A., Gonnenwein, S., Bischoff, S.C., Sherman, H., Chapnik, N., Froy, O.,Lorentz, A., 2013. The circadian clock is functional in eosinophils and mast cells. Immunology 4, 465–474.

Burioka, N., Fukuoka, Y., Koyanagi, S., Miyata, M., Takata, M., Chikumi, H., Takane, H.,Watanabe, M., Endo, M., Sako, T., Suyama, H., Ohdo, S., Shimizu, E., 2010. Asthma: chronopharmacotherapy and the molecular clock. Adv. Drug Deliv. Rev. 9–10,946–955.

Cermakian, N., Lange, T., Golombek, D., Sarkar, D., Nakao, A., Shibata, S., Mazzoccoli, G., 2013. Crosstalk between the circadian clock circuitry and the immune system.Chronobiol. Int. 7, 870–888.

IgE-dependent activation of human mast cells and fMLP-mediatedactivation of human eosinophils is controlled by the circadian clockAnja Baumanna, Katharina Feilhauerb, Stephan C. Bischoffa, Oren Froyc, Axel Lorentza. Molecular Immunology 64 (2015) 76–81.

Yuki Nakamura, et al. Circadian regulation of allergic reactions by the mast cell clock in mice. J Allergy Clin Immunol 133 (2014) 568-575.

 

Food allergy series: Food related allergic disorders

The term “food allergy” is generally used by medical professionals to refer to IgE mediated allergic responses. However, it is used in a broader sense by patients who have similar conditions because the term is more likely to be understood. The truth is that there are several types of allergic disorders provoked by foods. They are all listed below and will be expounded upon in the coming days.

IgE antibodies mediate the following types of reactions. All of them have immediate onset of symptoms following interaction with the antigen.

  • Oral allergy syndrome. This presentation is usually mild. It causes itching and mild swelling in the mouth, progressing into the throat about 7% of the time, with less than 2% of cases progressing to anaphylaxis. OAS occurs due to sensitization to pollens. These pollens have specific shapes that are recognized by the IgE molecules; certain raw fruits and vegetables may shapes that are close enough to be recognized by the same IgE molecules. This is known as crossreactivity. Cooking the food changes the shapes seen by the IgE molecules and is therefore cooked forms are usually safe. In birch pollen sensitive people, apples, peaches, pears and carrots can cause crossreaction; in ragweed sensitive people, melons can be problematic. This is usually diagnosed by skin testing with the raw fruits/ vegetables. OAS can persist and be problematic during the season when the offending pollens are most prevalent.
  • Asthma irritation, including rhinitis. This can be caused by inhaling the food protein. It is most common in infants and children with the exception of work exposures in adults, like Baker’s asthma. This most commonly occurs with the eight major allergens: egg, milk, wheat, soy, peanut, tree nuts, fish and shellfish. Skin testing and serum IgE measurement can be used for diagnosis.
  • Urticaria and angioedema. This occurs when an offending food is ingested or contacts the skin (contact urticaria.) Food exposures cause 20% of acute urticaria cases and 2% of chronic urticaria cases. It is much more common in children and usually occurs after exposure to the eight major allergens. Skin testing and serum IgE measurement can be used for diagnosis.
  • GI hypersensitivity.Immediate onset vomiting can occur in response to the major food allergens. Skin testing and serum IgE measurement can be used for diagnosis.
  • Food associated, exercise induced anaphylaxis. This occurs following ingestion of food after recent completion of exercise. It is thought that exercise affects the way the GI tract absorbs and digests allergens. This most commonly affects adults, with wheat, shellfish and celery being the most common foods to provoke this reaction. Skin testing, serum IgE measurement, component testing and exercise testing can be used for diagnosis.
  • Delayed food-induced anaphylaxis to meat. This occurs several hours after ingesting the meat. It occurs when the body generates antibodies to carbohydrate a-Gal, which can be induced by tick bites. Beef, pork and lamb are known to cause reactions in a-Gal sensitive people. Testing should include serum IgE to a-Gal.
  • Anaphylaxis. I have addressed this in detail before. It can occur in response to any food, but the eight major allergens are most common. It results in massive mast cell degranulation, leading to cardiovascular collapse.

Some allergic responses to food are due to both IgE mediated reactions and delayed cell-mediated reactions.

  • Atopic dermatitis. In children with AD, about 35% of moderate/severe rashes are due to food reactions. This is thought to be due to food reactive T cells locating to the skin. It is most common in infants and least common in adults. All major allergens can be causative, but egg and milk are the most common. AD is usually self limiting. Skin testing and serum IgE measurement can be used for diagnosis.
  • Eosinophilic GI disease (EGID.) Eosinophils are inflammatory cells that share a lot of functions and behaviors with mast cells. Like mast cell disease, eosinophilic disease can affect a variety of organs, most commonly the GI tract. Symptoms are widely variable and related to level of inflammation and infiltration. It often causes difficult or painful swallowing, weight loss, obstruction and edema. EGID is related to the activity of several mediators, include IL-5, eotaxin, which causes eosinophils to home to various inflamed locations. Much like mast cell disease, it can occur in response to a wide array of foods. Elimination diets are first line treatments for EGID. Endoscopy, kin testing and serum IgE measurement can be used for diagnosis, but elimination diets are often used empirically for diagnosis.

Some allergic type responses to food are not due to IgE antibodies.

  • Food protein induced enterocolitis syndrome (FPIES.) Usually found in infants, repeat exposure to certain proteins causes chronic vomiting, diarrhea, low energy and poor growth. Exposure again following a period of abstinence from offending substance can cause vomiting, diarrhea and 15% drop in blood pressure. These reactions occur about two hours after ingestion. Cow’s milk, soy, rice and oat are the most frequently reported sources, but many others have been recorded. In FPIES children, their cells are more responsive to TNF-a and less responsive to TGF-b. FPIES usually resolves with age, but can be difficult to diagnose due to skin testing and serum IgE testing usually being negative.
  • Food protein induced allergic proctocolitis. This causes mucuosy, bloody stools as a result of eosinophilic response in infants. This occurs in response to milk through breast feeding and resolves when the substance is removed from the mother’s diet.
  • Heiner syndrome. This rare condition is marked by pulmonary infiltration, upper respiratory symptoms, iron deficiency anemia and failure to thrive. It occurs in infants and is triggered specifically by milk. It is thought that there may be a milk specific IgG reaction.
  • Celiac disease. This autoimmune disease causes malabsorption and enteropathy. It is a response to gliadin, a gluten protein in wheat and other grains. It can cause bone abnormalities, IgA deficiency, dermatitis herpetiformis and a variety of other complications. It can present at any age and is lifelong. Blood testing during food challenges, GI biopsies, and testing for HLA DQ2 and DQ8.

Cell mediated reactions are not due to IgE antibodies.

  • Allergic contact dermatitis. This type of eczema occurs in response to metals in foods. This occurs mainly in adults. It is diagnosed by atopy patch testing.

Mast cell reactions to food are related to inappropriate degranulation which has not been fully characterized. Mast cell food reactions will be discussed more completely in an upcoming post.

 

Reference:

Sicherer, Scott, Sampson, Hugh. Food allergy: Epidemiology, pathogenesis, diagnosis and treatment. J Allergy Clin Immunol 2014, 133 (2): 291-307.