Skip to content

aggressive systemic mastocytosis

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 73

86. What is the role of the spleen in systemic mastocytosis? (Part Two)

  • The spleen is basically a big filter for the blood. In the previous post, I mentioned one of its functions: to catch certain types of infections in the blood that your immune system has a hard time fighting in other ways.  It does some other things, too. The spleen stores red blood cells and platelets so that your body has a backup supply in case of hemorrhage or trauma.
  • The spleen also looks for something else when it filters the blood: damaged or abnormal blood cells. Damaged or abnormal blood cells get caught in the spleen so that they don’t continue to circulate in the blood. The spleen then breaks down those bad cells and uses materials from them to help make new healthy cells.
  • If there are lots of abnormal cells, then the spleen gets swollen because it is holding many more cells than usual. This is why the spleen swells in diseases where the body has abnormal cells in the blood stream. How much the spleen swells is directly proportional to the amount of abnormal cells in the blood.
  • For example, in acute leukemias, there are tons of abnormal cells circulating in the bloodstream. The spleen catches as many as they can. Because there are a lot, the spleen swells very quickly. In chronic leukemias, there are still abnormal cells, but they are produced at a much slower rate over time. This means that the spleen has more time to break down the broken blood cells it catches before it catches more of them. In these scenarios, the spleen swells more slowly over a longer period of time.
  • You can apply this understanding directly to mastocytosis. Patients with indolent systemic mastocytosis have fewer mast cells than those with smoldering or aggressive systemic mastocytosis, or mast cell leukemia. The patients with indolent systemic mastocytosis make some abnormal mast cells. The spleen will catch the ones it sees and remove them from the bloodstream. But mast cells don’t live in the blood and they only pass through the bloodstream for a short time. So the spleen has time to break down some mast cells before it catches more.
  • When a patient with indolent systemic mastocytosis starts to produce higher numbers of mast cells, that’s when you see the spleen starting to swell. That’s why spleen swelling is a B finding for systemic mastocytosis – it is an indicator that the body is making more mast cells than before, and could be headed toward a more aggressive form.
  • The number getting filtered out by the spleen increases so the spleen swells. The more abnormal mast cells produced, the more the spleen swells.
  • Additionally, when the bone marrow is making lots of aberrant mast cells, they are introduced into the blood stream in much larger numbers than normal. This means that they are more likely to get caught in the spleen than in a person with indolent systemic mastocytosis.
  • In smoldering systemic mastocytosis, the body makes more mast cells than in indolent systemic mastocytosis, so it’s more common for the spleen to swell. In aggressive systemic mastocytosis, the bone marrow is producing a lot of mast cells and many of them are caught in the spleen over a short period of time. In mast cell leukemia, even more are made and caught, so the spleen becomes clogged up very quickly.
  • When the spleen is swollen from catching bad mast cells, the swelling causes it to break or damage other, healthy blood cells, too. This happens because the swelling of the spleen pinches the pathway for cells through the spleen so the other cells have to squeeze through, causing them to break. This is why patients with more advanced forms of systemic mastocytosis like smoldering systemic mastocytosis, aggressive systemic mastocytosis, and mast cell leukemia are more likely to have low blood cell counts than people with indolent systemic mastocytosis.
  • In addition to the risk of low blood cell counts, the swelling and dysfunction of the spleen can also contribute to portal hypertension. This is when there is high pressure in the blood vessel system that connects the GI tract, the pancreas, the spleen and the liver.
  • Portal hypertension is also a C finding for aggressive systemic mastocytosis. This means that a person who has this because of mastocytosis receives a diagnosis of aggressive systemic mastocytosis.
  • Portal hypertension can affect liver function and can cause fluid that should be in the liver to end up in the general abdominal space, a condition called ascites.
  • Splenic swelling often causes no symptoms. It is unusual for it to cause pain in the general area of the spleen. Left shoulder pain sometimes occurs if the spleen is very swollen.
  • The general rule of thumb is that the spleen has to be twice its normal size for it to be felt on a physical exam. The exact amount of swelling is usually measured by an ultrasound.
  • Spleen swelling does not usually require treatment. Generally, unless there is hypersplenism, it is not treated.
  • The treatment for hypersplenism is splenectomy, surgical removal of the spleen. The spleen is removed mainly for two reasons: to decrease portal hypertension, thereby reducing stress on the liver; and to prevent the spleen from rupturing, which can cause fatal hemorrhage.

This question was answered in two parts. Please see the previous post for more information.

For additional reading, please visit the following posts:

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)

The Provider Primer Series: Natural history of SM-AHD, MCL and MCS

Mast cell disease and the spleen

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 72

86. What is the role of the spleen in systemic mastocytosis? (Part One)

  • The spleen is basically a big filter for the blood. It is supposed to catch certain types of infections in the blood that your immune system has a hard time fighting in other ways.
  • When the spleen is swollen but still functions pretty well, it is called splenomegaly.
  • Swelling of the spleen is not uncommon in systemic mastocytosis. Splenomegaly is most often seen in patients with smoldering systemic mastocytosis, aggressive systemic mastocytosis, and mast cell leukemia, but sometimes patients with indolent systemic mastocytosis have swelling of the spleen.
  • When the spleen swells, the pathway for the blood going through the filter gets pinched. Blood goes in but has to pass through a narrow exit route to get out of the spleen. The more swollen the spleen is, the narrower the pathway for the blood to get through the spleen. This means that cells can be damaged or broken open if the spleen is swollen.
  • How much this happens depends upon how swollen the spleen is. If it is only a little swollen, the change in blood cell counts can be minimal.
  • For systemic mastocytosis, a swollen spleen that works well (splenomegaly) is what is called a B finding. A B finding is a way to tell if a patient’s indolent systemic mastocytosis is moving to a more serious form, like smoldering systemic mastocytosis or aggressive systemic mastocytosis. If a patient has a B finding, they are monitored more closely to look for other clues that could mean the disease is progressing.
  • Please note that the B finding MUST be caused by the mastocytosis to count. For example, if an SM patient falls off their bike and injures their spleen, causing it to swell, this is not a B finding. If the mastocytosis didn’t cause the problem, it doesn’t count.
  • Mast cell patients who have a spleen that is swollen but works correctly don’t damage too many blood cells. This means blood counts are often normal in this situation. If blood cell counts are not normal, the spleen is not the cause.
  • Some patients with aggressive systemic mastocytosis and mast cell leukemia develop a condition called hypersplenism. Hypersplenism basically means the spleen is working way too hard. Hypersplenism is a C finding, a marker that indicates that a patient’s mastocytosis has become very aggressive. If a patient has a C finding, they are diagnosed with aggressive systemic mastocytosis (ASM).
  • Sometimes patients with mast cell leukemia have hypersplenism. However, there are stringent criteria for diagnosing mast cell leukemia. Just having a C finding isn’t enough for a diagnosis of mast cell leukemia, while just having a C finding IS enough for a diagnosis of aggressive systemic mastocytosis.
  • Having a C finding is not a defining feature of mast cell leukemia the way it is for aggressive systemic mastocytosis.
  • Some patients with systemic mastocytosis have another blood disorder that causes the bone marrow to make too many cells. This is cleverly named systemic mastocytosis with associated hematologic disorder (SM-AHD). People with SM-AHD can have any stage of systemic mastocytosis. If they have another blood disorder, they are categorized as having SM-AHD even if they have aggressive systemic mastocytosis or smoldering systemic mastocytosis. So a person with SM-AHD can have any type of systemic mastocytosis, including aggressive systemic mastocytosis.
  • Sometimes patients with systemic mastocytosis alongside another blood disorder (called SM-AHD) have hypersplenism. Here, the hypersplenism could be caused by one of two conditions: systemic mastocytosis, or the other blood disorder. If the mastocytosis causes the spleen issue, the patient gets a diagnosis of aggressive systemic mastocytosis just like any systemic mastocytosis patient. If the other blood disorder is what causes the hypersplenism, the patient does not get a diagnosis of aggressive systemic mastocytosis.
  • If the mastocytosis causes the spleen issue, then we know that this is a C finding, a marker for aggressive systemic mastocytosis. If the other blood disorder is what causes the hypersplenism, it is not a C finding and does not indicate aggressive systemic mastocytosis.
  • Please note that having a C finding is not a defining feature of SM-AHD the way it is for aggressive systemic mastocytosis.
  • Hypersplenism sometimes occurs in patients with SM-AHD. It could be caused by either the systemic mastocytosis or the other blood disorder. It can be trickier to figure out exactly what is causing the splenic issues.
  • If the mastocytosis causes the spleen issue, then we know that this is a C finding, a marker for aggressive systemic mastocytosis. If the other blood disorder is what causes the hypersplenism, it is not a C finding and does not indicate aggressive systemic mastocytosis.
  • Please note that having a C finding is not a defining feature of SM-AHD the way it is for aggressive systemic mastocytosis.
  • You can tell that a person has hypersplenism by looking at four things:
    1. Low counts of certain blood cells in the blood. Red blood cells, platelets, and some white blood cells can be low because of hypersplenism. The white blood cells that are low when a person is hypersplenic are eosinophils, neutrophils, and basophils. These cells all have granules full of chemicals like mast cells do.
    2. The bone marrow trying to make extra blood cells to make up for the ones that being destroyed by the spleen.
    3. Swelling of the spleen.
    4. The expectation that if the spleen is removed, the blood cell counts will go up and the bone marrow will start making normal amounts of blood cells again.

This question was answered in two parts. Please see the following post for more information.

For additional reading, please visit the following posts:

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)

The Provider Primer Series: Natural history of SM-AHD, MCL and MCS

Mast cell disease and the spleen

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 66

80. When is chemotherapy necessary for mast cell disease?

  • For mastocytosis patients, chemotherapy is used for patients with systemic mastocytosis in whom the disease is malignant (aggressive systemic mastocytosis or mast cell leukemia) or seems to be progressing towards a cancerous form of the disease (smoldering systemic mastocytosis). There are very clear cut guidelines for this. Interferon and chemotherapy are used when a patient has smoldering mastocytosis with increasing mast cell counts; aggressive systemic mastocytosis; or mast cell leukemia, in order to kill off mast cells to slow disease progression and extend a patient’s lifespan.
  • A patient who already meets the criteria for systemic mastocytosis, who has two or more B findings, is considered to have smoldering systemic mastocytosis. SSM is a transition state between indolent SM, which has a normal lifespan, and malignant forms of mast cell disease, including ASM and MCL.
  • Having two or more of the following gets you a diagnosis of SSM: mast cell aggregates that take up 30% or more of cells in a bone marrow biopsy, and/or serum tryptase over 200 ng/mL; bone marrow with too many cells in it overall, without evidence of MDS or a myeloproliferative neoplastic disease; or organ swelling that has not yet affected organ function (swelling of the liver without ascites, spleen swelling enough that it can felt by palpation, lymph nodes swollen to 2 cm or larger).
  • Patients with SSM are watched to see if their body is making lots of mast cells quickly, or if their organs are feeling the strain of too many mast cells. One of the way they check this is to see how quickly their tryptase level increases. If their provider feels that their disease is progressing, they receive chemo or interferon to try and knock the disease down enough that they don’t reach the criteria for ASM.
  • Patients are diagnosed with ASM if they meet the criteria for SM and any of the following criteria: the body not making enough blood cells, cytopenia (absolute neutrophil count below 1000/ul, hemoglobin below 10g/dl, or platelets below 100000/ul); swelling of the liver along with free fluid in the abdomen (ascites), elevated liver enzymes, or portal hypertension; swelling of the spleen along with decreased blood cells due to damage in the spleen, excessive production of blood cells by the bone marrow to compensate, and likely resolution if the spleen is removed; malabsorption in the GI tract causing low protein in the blood (albumin) and weight loss; and severe bone dysfunction, causing a series of bone breaks and large osteolytic lesions from mastocytosis.
  • ASM patients are put on chemotherapy or interferon, usually continuously, unless there is evidence that they have killed off enough mast cells to have a less dangerous disease category.
  • Mast cell leukemia patients are on chemotherapy continuously.
  • There is no described use for chemo in cutaneous mastocytosis.
  • There are situations where patients with other disease categories (ISM, MMAS, MCAS) are put on chemo drugs to try and manage symptoms or shock episodes after all other therapies have failed. While this has been mentioned in literature, there have been no studies on it.
  • Chemo drugs should be used as a last resort. They can have significant side effects and complications that cannot always be remedied by stopping the treatment.
  • Please note that while newer, targeted chemos have become more common, they are in fact chemotherapy and carry significant risks despite being more tailored, including the potential for organ damage or failure.

For additional reading, please visit the following posts:

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)

The Provider Primer Series: Natural history of SM-AHD, MCL, MCS 

The Provider Primer Series: Mast cell activation syndrome (MCAS)

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 59

73. Can mast cell disease cause organ damage?

  • Yes.
  • The term organ damage is tricky because people use it to mean a lot of things while providers and researchers often use it to mean one very specific thing. For providers and researchers, the term “organ damage” usually means a change in the organ that affects its structure, like it becomes misshapen or deformed in some way. Structural changes like this are often irreversible. This damage to the organ’s shape and structure usually affects how the organ works, called organ function.
  • When patients and laypeople talk about organ damage, they usually mean a change in the way the organ functions, even if the structure is not changed at all. This is different in a very important way: changes in an organ that do not affect its permanent structure can sometimes be reversible.
  • Both cutaneous and systemic mastocytosis cause organ damage in a way that damages the organ’s structure. When too many mast cells burrow into the tissue of an organ, it has to push other things out of the way. When you have mastocytosis, the mast cells like to stick together and form a big clump in the tissue. This punches holes in the tissue, affecting the organ’s structure and shape. This is called dense infiltration. It is one of the criteria for systemic mastocytosis and also happens in cutaneous mastocytosis.
  • In patients with mastocytosis, those mast cells clumping together cause a lot of the organ damage. This means that people who have the most mast cells usually have the worst organ damage. Patients with malignant forms of mast cell disease, like mast cell leukemia or aggressive systemic mastocytosis, often have organs that are riddled with TONS of mast cells.
  • Mast cells don’t live in the blood so when your body makes way too many mast cells, those mast cells will dive into whatever organ they can to get out of the bloodstream. This causes damage to the structure that you can see with scans or in biopsies.  People with mast cell leukemia and aggressive systemic mastocytosis suffer so much damage to the shape and function of their organs that the organs can totally stop working, called organ failure.
  • One of the key differences researchers and providers see between mastocytosis and mast cell activation syndrome is that mast cells don’t cause THIS TYPE of structural damage in mast cell activation syndrome patients.
  • We know this because in biopsies, they do not have mast cells clumped together to punch holes in the tissue. Sometimes they have lots of mast cells, but it is much less damaging to the tissue if they aren’t clumped together. Think of it like poking something with finger versus punching with your fist.
  • In MCAS, mast cells do not cause structural damage to organs IN THIS WAY. However, many people with MCAS do have structural damage to their organs. Many of them also have organs that do not function correctly even if the organs look normal.
  • Even if you don’t have mast cells punching holes in all your organs, they can still do a lot of damage. This is because mast cells cause lots of inflammation, which can stress out your organs. Over time, your organs can be damaged by the mast cells releasing too many mediators. While this is not always dangerous, it is certainly painful and frustrating.
  • Many MCAS and mastocytosis patients have a lot of damage to their GI tracts from years of vomiting, obstructions, diarrhea or constipation. Hives and mastocytosis spots can damage your skin, causing discoloration, scarring or sensitivity. Muscles can become weaker over time because of mast cell inflammation. Swelling can stretch out your skin and connective tissues. Nerves can be damaged significantly, affecting organ function. Bones can become brittle and break, or can become too dense because the body is making new bone when it shouldn’t.
  • All of these effects on organ function can be caused by mast cells. Major changes in organ function can also cause secondary conditions to arise.
  • Mast cell patients are also at an increased risk for anaphylaxis which can cause changes in organ function or organ damage.
  • Patients who have trouble breathing or low blood pressure may not be getting enough oxygen to their whole body. That can cause lasting damage if it goes on long enough.

For more detailed reading, please visit the following posts:

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 48

59. Is systemic mastocytosis a form of cancer? Why do some papers say the life expectancy for systemic mastocytosis patients is much shorter?

Systemic mastocytosis is a term that different people use in different ways, often without defining them for the audience. This can lead to some confusion.

In its broadest sense, systemic mastocytosis is actually a disease category rather than one specific diagnosis. The subtypes of systemic mastocytosis are indolent systemic mastocytosis (ISM), smoldering systemic mastocytosis (SSM), systemic mastocytosis with associated hematologic disease (SM-AHD), aggressive systemic mastocytosis (ASM), and mast cell leukemia (MCL).

When patients talk about systemic mastocytosis without specifying which diagnosis, they almost always mean indolent systemic mastocytosis (ISM), the most common form of SM. ISM is benign and has a normal life expectancy. But when providers and researchers talk about systemic mastocytosis, they usually mean the disease category that includes all of these diagnoses.

I just recently explained in another post what a neoplasm is. It is essentially when the body grows something that doesn’t belong there, like extra cells or a tumor. Cancers are neoplasms but not all neoplasms are cancerous. Indolent systemic mastocytosis is not cancerous. Even without taking drugs to kill off lots of mast cells, the prognosis is excellent with a normal life span. However, aggressive systemic mastocytosis and mast cell leukemia are considered cancerous. Without taking drugs to kill off mast cells, the body would be unable to cope with the huge number of mast cells and the damage they cause. Smoldering systemic mastocytosis is sort of a bridge between ISM, which is benign, and ASM, which is not.

If you are not aware that research papers usually use the term systemic mastocytosis to mean all forms of systemic mastocytosis and not just indolent systemic mastocytosis (ISM), it is easy to get confused and misunderstand what is being said. There was a paper published in 2009 that discussed expected survival for the various forms of systemic mastocytosis. It provides a very jarring statistic for patients who may not understand the context. This study found that many patients with systemic mastocytosis died 3-5 years after diagnosis.

Let’s pull this apart. We know there are five forms of SM: indolent SM, the most common form, which usually has a normal life span; smoldering SM, which usually has a shortened life span; aggressive SM, which can have a very shortened life span; mast cell leukemia, which has a very shortened life span; and SM with an associated hematologic disorder, which may have a shortened life span. When you average the life expectancies for a mixed group of patients with these various diagnoses, it shows that overall, SM patients are more likely to die 3-5 years after diagnosis when compared to healthy people of the same age.

Additionally, a lot of the patients in this study group were older and died of causes unrelated to systemic mastocytosis. However, because they were part of the study, their deaths of unrelated causes were still included in this data.

Let’s recap: in a research paper, the term systemic mastocytosis includes forms of SM that are malignant and can really shorten your life expectancy as well as forms that are benign and do not shorten your life expectancy. When you average the life expectancies of all of these forms together, it looks like patients are more likely to die 3-5 years after diagnosis. A bunch of other papers then used the data from this study in 2009 without explaining the details behind it. However, most patients with SM have normal life spans.

For more detailed information, please visit these posts:

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)

The Provider Primer Series: Natural history of SM-AHD, MCL and MCS

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 45

54. How does mast cell disease affect clotting?

Heparin is a very potent blood thinner and inhibits the body’s ability to form clots.  Mast cells are full of heparin. Mast cells stores chemicals like heparin in little pouches inside them called granules. In the granules, histamine is stuck to heparin. This means that when mast cells open their granules and release histamine, heparin comes out with it. This can contribute to things like bruising or bleeding more than expected.

Mast cells release other chemicals that can affect clotting. Platelet activation factor and thromboxane A2 both encourage the body to make clots. Some chemicals that help to regulate when to make a clot can activate mast cells, like complement C3a and C5a.

55. How many people have mast cell disease?

It is hard to know exactly how many people have a rare disease because they are not reported if they are recognized and correctly diagnosed. As recognition and diagnosis improves, rare diseases are often found to be more prevalent than previously thought. The numbers below are current estimates.

Systemic mastocytosis is thought to affect around 0.3-13/100000 people. In one large study, indolent systemic mastocytosis (ISM) makes up 47% of cases. Aggressive systemic mastocytosis (ASM) has been described in various places as comprising 3-10%. Systemic mastocytosis with associated hematologic disease could count for as many of 40% of cases of SM. Mast cell leukemia is extremely rare and accounts for less than 1% of SM cases.

Systemic mastocytosis accounts for about 10% of total mastocytosis cases. This means that total mastocytosis cases come in at around 3-130/100000 people. The remaining 90% of mastocytosis cases are cutaneous with incidence roughly around 2.7-117/100000 people.

We do not have yet have a great grasp upon how many people have mast cell activation syndrome (MCAS) but from where I am sitting, it’s a lot and that number is likely to grow. We know that genetic studies have found mutations that might be linked to MCAS in up to 9% of the people in some groups. However, having a mutation is not the same thing as having a disease. As we learn more about MCAS, we will gain some clarity around how many people have it.

For more detailed reading, please visit the following posts:

Progression of mast cell diseases: Part 2

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)

The Provider Primer Series: Natural history of SM-AHD, MCL and MCS

The Provider Primer Series: Cutaneous mastocytosis/Mastocytosis in the skin

 

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 37

44. What is a myeloproliferative neoplasm? Is that what mast cell disease is?

First, let’s pull this term apart.

“Myelo” means marrow, like bone marrow. In this context, it refers to a specific group of blood cells that are made in the bone marrow. These cells are called myeloid or myelogenous cells. These cells all start as one kind of cell called a myeloid progenitor cell. Mast cells and eosinophils are myeloid cells. There are other myeloid cells, too.

“Proliferative” means making lots of cells quickly. In this case, it means making many cells too quickly. When too many cells are made too quickly, the cells are often not made correctly so they don’t work right.

“Myeloproliferative” means making too many myeloid cells very quickly, producing cells that often don’t work right.

“Neo” means new.

“Plasm” means the substance that makes up something living, like what makes up a cell or a tissue. “Plasm” is part of many words used in biology.

“Neoplasm” means the body growing new things, things that don’t belong there. For example, cancers are neoplasms. (Although not all neoplasms are cancers).

Myeloproliferative neoplasm means your body making too many myeloid cells that don’t work correctly.

Speaking generally, any condition where the body makes too many of these myeloid cells when they shouldn’t is a myeloproliferative neoplasm. This means all form of mastocytosis and mast cell tumors (mast cell sarcoma and mastocytoma) are myeloproliferative neoplasms.

However, when people ask if mast cell diseases are myeloproliferative neoplasms, they are usually asking about the WHO (World Health Organization) classification of mast cell disease, which is a little different.

The WHO puts out an exhaustive list of diseases for reference. They group similar diseases together under one category. This list is also revised periodically as new data becomes available or experts request it.

Under the 2008 WHO guidelines, mast cell diseases were classified as myeloproliferative neoplasms along with several other diseases. The other diseases also included in this category make too many myeloid cells too quickly, like essential thrombocythemia, in which the body makes too many platelets.

The mast cell diseases classified as myeloproliferative neoplasms were cutaneous mastocytosis: maculopapular cutaneous mastocytosis (MPCM), diffuse cutaneous mastocytosis (DCM), and solitary mastocytoma of the skin; systemic mastocytosis: indolent systemic mastocytosis (ISM), systemic mastocytosis with associated hematologic disease (SM-AHD), aggressive systemic mastocytosis (ASM), and mast cell leukemia (MCL); and mast cell sarcoma. Smoldering systemic mastocytosis (SSM) was mentioned as a provisional category rather than a formal category, meaning that the WHO did not agree that this diagnosis was different enough from ISM to warrant its own category. Neither monoclonal mast cell activation syndrome (MMAS) or mast cell activation syndrome (MCAS) were classified anywhere in the 2008 WHO Guidelines as they were not yet recognized by the WHO as diseases.

Last year, the WHO revised the classification of myeloproliferative neoplasms. It removed all forms of mast cell disease from the myeloproliferative neoplasm category and made a different category for mast cell diseases. This was done because the WHO recognized that mast cell diseases differed from the other myeloproliferative neoplasms in specific ways. They also recognized that mast cell activation syndrome has a ton in common with other mast cell diseases even though it’s not a neoplastic disease. (Mast cell activation syndrome is not from the body making too many mast cells).

So all mast cell diseases were put together. In the new category, the following mast cell diseases were included: cutaneous mastocytosis: maculopapular cutaneous mastocytosis (MPCM), diffuse cutaneous mastocytosis (DCM), and solitary mastocytoma of the skin; systemic mastocytosis: indolent systemic mastocytosis (ISM), systemic mastocytosis with associated clonal hematologic non-mast cell lineage disease (SM-AHNMD), aggressive systemic mastocytosis (ASM), and mast cell leukemia (MCL); mast cell sarcoma; monoclonal mast cell activation syndrome (MMAS); and mast cell activation syndrome (MCAS).

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 26

I answered the 107 questions I have been asked most in the last four years. No jargon. No terminology. Just answers.

34. What are the differences between the forms of systemic mastocytosis?

Indolent systemic mastocytosis

  • A form of SM in which the amount of mast cells produced in the bone marrow is excessive but not inherently dangerous to organ function.
  • Mast cells produced in the bone marrow are damaged.
  • These mast cells are released into the blood. While there are more mast cells than usual, there are not enough to overwhelm the blood.
  • There are fewer mast cells than in mast cell leukemia. There are often fewer mast cells than aggressive systemic mastocytosis or smoldering systemic mastocytosis.
  • The mast cells leave the blood and may enter organs inappropriately. Some patients do not have signs of too many mast cells being in an organ other than bone marrow.
  • The presence of mast cells in organ tissue can cause symptoms and medical signs but is not inherently dangerous to organ function.
  • It is not unusual for ISM patients to have typical mast cell symptoms and complications like anaphylaxis.
  • The lifespan for ISM is normal.
  • In indolent systemic mastocytosis, patients die from progressing to a more aggressive form of SM, such as MCL, ASM or SM-AHD.
  • Fatal anaphylaxis is always a risk with mast cell disease.

Smoldering systemic mastocytosis

  • A form of SM in which the amount of mast cells produced in the bone marrow is increasing to the point at which it might cause organ damage.
  • Mast cells produced in the bone marrow are damaged.
  • These mast cells are released into the blood. There are fewer mast cells than in mast cell leukemia. There are often fewer mast cells than aggressive systemic mastocytosis.
  • Mast cells leave the blood and enter organs in larger numbers than is normal. The presence of mast cells in these organs can cause symptoms and medical signs, like swelling of the liver.
  • Organ dysfunction can sometimes be corrected with surgery or certain medications.
  • It is not unusual for SSM patients to have typical mast cell symptoms and complications like anaphylaxis.
  • The lifespan for SSM is widely variable. One well known paper published survival of around ten years. However, many of the patients in this study were over 60 and age may have affected the average survival found in this group.
  • Patients with smoldering systemic mastocytosis are monitored to look for signs of significant organ dysfunction.
  • People with this diagnosis are considered to be possibly transitioning to a more serious form of systemic mastocytosis.
  • Smoldering systemic mastocytosis is the diagnosis that occurs between aggressive systemic mastocytosis and indolent systemic mastocytosis. It is thought of as the stage crossed when a patient with indolent systemic mastocytosis progresses to having aggressive systemic mastocytosis or mast cell leukemia.
  • In smoldering systemic mastocytosis, patients die from progressing to a more aggressive form of SM, such as MCL, ASM or SM-AHD.
  • Fatal anaphylaxis is always a risk with mast cell disease.

Aggressive systemic mastocytosis

  • A dangerous form of SM in which your bone marrow makes way too many damaged mast cells.
  • These mast cells are released into the blood. There are fewer mast cells than in the blood than in mast cell leukemia.
  • The mast cells leave the blood and go into various organs.
  • The presence and activation of the mast cells in the organs can affect organ function.
  • Over time, the presence and activation of mast cells in the organs can cause organ failure. This can sometimes be corrected with surgery or certain medications.
  • Typical mast cell mediator symptoms and complications like anaphylaxis are less common than in less serious types of SM.
  • The lifespan for ASM is much shorter than normal but is dependent upon response to treatment and which organs are involved. Older papers reference an average of 41 month survival but this has changed with more recent treatment options.
  • Generally, people with ASM live longer than those with MCL.
  • In aggressive systemic mastocytosis, patients die from the organ damage that has accrued over time by the presence and activation of mast cells in places they don’t belong.
  • Fatal anaphylaxis is always a risk with mast cell disease.

Mast cell leukemia

  • A very dangerous form of SM in which your bone marrow makes massive amounts of damaged mast cells.
  • These mast cells are released into the blood in overwhelming numbers.
  • The mast cells leave the blood and end up in various organs.
  • Specifically because of how many mast cells are present, mast cells invading the organs break up the organ tissue and cause severe organ damage.
  • The organ damage leads to organ failure, which leads to death.
  • Typical mast cell mediator symptoms and complications like anaphylaxis are less common than in less serious types of SM.
  • The lifespan for MCL is much shorter than normal.
  • Lifespan for MCL is usually quoted as being in the range of 6-18 months. However, there are more recent reports of some patients living 4+ years.
  • In mast cell leukemia, patients die from the organ damage caused by large amounts of mast cells entering and breaking up organ tissue.
  • Fatal anaphylaxis is always a risk with mast cell disease.
  • Of note, there is a newly described chronic form of mast cell leukemia. In this form, patients have stable mast cell disease despite having an overwhelming amount of mast cells in their bodies. The reason for this is unclear and long term survival is not yet known.

Systemic mastocytosis with associated hematologic disease

  • A form of SM in which the patient also has a separate blood disorder that produces too many cells of a different kind.
  • A patient with systemic mastocytosis with associated hematologic disease has too many mast cells and too many blood cells of a different kind. 
  • Previously called SM-AHNMD, systemic mastocytosis with associated clonal hematologic non mast cell lineage disease.
  • The two blood disorders, SM and the other disorder, are treated separately the same way they would be if the patient only had one or the other.
  • The lifespan for SM-AHD is wildly variable as it depends both on which type of SM the patient has as well as the type and severity of the other blood disorder.
  • An important thing to remember is if a patient has SM and another blood disorder that produces too many cells, they are classified as SM-AHD regardless of the type of SM they have. For example, if a patient who has ISM (normal lifespan) also has chronic myelogenous leukemia, they have SM-AHD. However, if the patient has ASM (shortened lifespan) and chronicle myelogenous leukemia, they still have SM-AHD even though the prognosis changes considerably.
  • In SM-AHD, patients die from having an aggressive form of SM, such as MCL or ASM, or as a result of their other blood disorder.
  • Fatal anaphylaxis is always a risk with mast cell disease.

For more detailed reading, please visit these posts:
The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)
The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (SM-AHD, MCL, MCS)

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 15

I have answered the 107 questions I have been asked most in the last four years. No jargon. No terminology. Just answers.
23. Is mast cell disease progressive?
No, mast cell disease is not inherently progressive. Many patients live their entire lives with the same diagnosis.
“Progressive” is not the same thing as “changing.” The way mast cell disease can change over time and often does.
• “Progressive” has a very specific meaning in this context. It means movement from one diagnostic category to another, essentially changing your diagnosis to a more serious form of mast cell disease.
We do not have studies yet on whether or not MCAS “becomes” SM. However, we know that many people live with MCAS for decades without evidence of SM.
• There are several subtypes of systemic mastocytosis. In order of increasing severity, they are: indolent systemic mastocytosis; smoldering systemic mastocytosis; systemic mastocytosis with associated hematologic disease; aggressive systemic mastocytosis; and mast cell leukemia.
• The relative danger of systemic mastocytosis with associated hematologic disease (SM-AHD) when compared with other forms of systemic mastocytosis varies wildly. SM-AHD is when you have SM and another blood disorder where your body makes way too many cells. The other blood disorder is an important factor in life expectancy and risk of organ damage so it is difficult to compare it to other forms of mastocytosis.
• For patients with indolent systemic mastocytosis, in the 5-10 years following diagnosis, about 1.7% of patients progressed to smoldering mastocytosis, aggressive systemic mastocytosis, or mast cell leukemia.
• For patients with indolent systemic mastocytosis, in the 20-25 years following diagnosis, about 8.4% of patients progressed to smoldering mastocytosis, aggressive systemic mastocytosis, or mast cell leukemia.
• For patients with indolent systemic mastocytosis, one study found that roughly 8% of patients progressed to smoldering systemic mastocytosis.
• For patients with indolent systemic mastocytosis, two studies found that roughly 3% and 4% of patients progressed to aggressive systemic mastocytosis.
• For patients with indolent systemic mastocytosis, about 0.6% of patients progressed to acute leukemia (mast cell leukemia or acute myelogenous leukemia)..
• For patients with smoldering systemic mastocytosis, about 18% of them progressed to aggressive systemic mastocytosis or mast cell leukemia.
• For patients with aggressive systemic mastocytosis, about 6.5% of them progressed to acute leukemia (mast cell leukemia or acute myelogenous leukemia).
• For patients with systemic mastocytosis with associated hematologic disease, about 13% of them progressed to acute leukemia (mast cell leukemia or acute myelogenous leukemia).

For more detailed reading, please visit these posts:

Progression of mast cell diseases: Part 2

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (SM-AHD, MCL, MCS)

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 2

I have answered the 107 questions I have been asked most in the last four years. No jargon. No terminology. Just answers.

3. What causes mast cell disease?

  • The cause of mast cell disease is not yet definitively known.
  • As mentioned yesterday, when the body makes too many copies of a broken cell, those cells are called ‘clonal’ cells. In clonal forms of mast cell disease, the bone marrow makes too many mast cells. Those mast cells also don’t work correctly. Examples of clonal mast cell diseases are systemic mastocytosis and cutaneous mastocytosis.
  • Patients with systemic mastocytosis often have a specific genetic mutation called the CKIT D816V mutation. About 80-90% of systemic mastocytosis patients have this mutation. This mutation is in mast cells and it tells the mast cells to stay alive WAY longer than they should. And mast cells already live for months or years, a very long time for cells to live in the body. So patients with this mutation can end up with way too many broken mast cells.
  • Despite the fact that we know that many patients have this mutation, we do not say that this mutation CAUSES the disease. The reason for this is that sometimes, mast cell patients don’t have the mutation when they get sick but they develop it later. Sometimes, mast cell patients have the mutation and then lose it later. So we are still looking for something that causes the disease.
  • Patients with non-clonal mast cell disease do not have a single major mutation like the CKIT D816V mutation. This makes it harder to diagnose. Researchers have found that many times, patients with MCAS DO have mutations similar to the ones systemic mastocytosis patients do. But the MCAS patients often have different mutations from each other. That’s why it’s not helpful yet for diagnosis.
  • Despite the fact that the mutations described here are not considered to be heritable, there is more and more evidence that mast cell disease can happen to many people in the same family. See the next question for more details.

4. Is mast cell disease heritable?

  • Mast cell disease often affects multiple members of the same family. Importantly, patients often have a different type of mast cell disease than their relatives. This implies that mast cell disease is more of a spectrum rather than several different diseases.
  • A survey found that 74% of mast cell patients interviewed reported at least one first degree relative that had mast cell disease. This same study found that 46% of those patients had mast cell disease that affected more than just their skin. This is called systemic disease.
  • The CKIT D816V mutation is the mutation most strongly associated with clonal mast cell disease. The CKIT D816V mutation is NOT heritable.
  • There are very rare instances of other heritable mutations in families that have mast cell disease. The significance of this is not clear.

5. Can mast cell disease be cured?

  • Generally speaking, there is no cure for mast cell disease.
  • Children who present with cutaneous mastocytosis sometimes grow out of their disease. Their lesions disappear. Their mast cell symptoms affecting the rest of the body may disappear. We do not know why this happens. It has been heavily researched with long term follow up of children with childhood mastocytosis (at least one paper followed them for 20 years).
  • Children with true systemic mastocytosis do not grow out of their disease.
  • There is not yet data on children with MCAS. Anecdotally, they do not seem to grow out of their disease like kids with cutaneous mastocytosis can. Importantly, this is just what it looks like to me. Again, there is no data.
  • People with adult onset mast cell disease have lifelong disease.
  • There is one notable exception to this scenario. There are reports of curing mast cell disease following hematopoietic stem cell transplant/bone marrow transplant.
  • Transplantation is EXTREMELY dangerous. The transplant is MUCH, MUCH more dangerous than mast cell disease. Many people do not survive the protocol necessary to prepare for transplant. Many die from complications, or from a disease they acquired after their transplant.
  • Rarely, people may have malignant forms of mast cell disease, aggressive systemic mastocytosis (ASM) or mast cell leukemia (MCL). A few patients with these diseases have tried transplants after everything else failed. While some did see improvement after transplant, no one has survived more than a few years.
  • Conversely, sometimes people with mast cell disease have these transplants for other reasons, like having another blood cancer or bone marrow disease that requires transplant. In this group of people, some see drastic improvement of their mast cell disease. Some see a full remission of mast cell disease. Some do not get any improvement. These findings are pretty recent so it’s hard to be more specific.

For more detailed reading, please visit these posts:

The Provider Primer Series: Introduction to Mast Cells

The Provider Primer Series: Mast cell activation syndrome (MCAS)

The Provider Primer Series: Cutaneous Mastocytosis/ Mastocytosis in the Skin

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (SM-AHD, MCL, MCS)

Mast cell disease in families

Heritable mutations in mastocytosis