The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 65

79. Do probiotics help GI symptoms from mast cell disease?

  • Some people may not be aware of this, but my first science love was microbiology. I love bacteria. They are my teeny little super guys. Mostly because they make the world go round. <3
  • Yes, probiotics help symptoms from mast cell disease.
  • Your body is populated with millions and millions of microbes in just about every place where your body comes into contact with the outside world. This is mostly skin, GI tract, GU tract, and upper respiratory tract.
  • This is an example of symbiosis: the science term for “everybody wins.” Microbes get a steady source of food and protection from the outside world by living attached to some part of us. In return, they help us to break down molecules, make vitamins for us, and help protect us from infections by taking up all the available microbe real estate. If there’s already friendly bacteria (or yeast) living in every available place where microbes could attach to us, that helps to protect us from not so friendly microbes who need a place to latch on.
  • Antibiotics and antimicrobials are in tons of over the counter of products. We are in an age where antibiotics and antimycotics are being used more than ever, often in situations where they can’t even provide benefit.
  • These have the effect of killing off all the helpful microbes, leaving us in a situation where the ones that are left are the most resistant to treatment. This is a huge problem for a number of reasons, the biggest one being the genesis of super bugs, antibiotic resistant organisms that we can’t kill.
  • But there’s another big reason: when you kill off helpful bacteria, it affects our day to day bodily functions. Our bodies have evolved to have this symbiotic relationship with these organisms for millennia. When we kill all those little super guys off, our body is open to infections and situations that cause inflammation.
  • The population of microbes that normally lives happily inside our healthy bodies is called our commensal. If it’s in the GI tract, it’s called the GI commensal.
  • We know for sure that food allergies is related at least partially to changes in the GI commensal.
  • There are a number of experiments that show that if you take the GI commensal out of a healthy mouse and transplant it into a food allergic mouse, that mouse is no longer food allergic. We also know that if you take the GI commensal out of a food allergic mouse and transplant it into a healthy mouse, now you have two food allergic mice.
  • Probiotics contain microbes that you can use to replace the good ones that have been killed off. Mast cell patients, and patients with other inflammatory GI diseases, report a lot of benefit with using probiotics. Mast cell patients have to be careful and need to be sure to look up the ingredients of every probiotic they try, as many of them contain triggers, like lactose. VSL3 often works pretty well in people who are reactive. Culturelle is used by lots of patients. It depends on a lot. Your mileage may vary.
  • People with central lines should use caution and always be sure to wash hands and sterilize surfaces between taking probiotics and using their lines. These organisms are not supposed to be introduced to the bloodstream and could potentially cause infections, especially in people with depressed immunity.
  • I would to give a shout out to MastAttack admin, Pari, who is the most relentless advocate for probiotics I have ever seen. She cares more about your use of probiotics than I care about most things.

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 55

69. What routine monitoring should mast cell patients receive?

There are not yet routine testing recommendations for MCAS patients, but there are some for mastocytosis patients. Many doctors use the mastocytosis recommendations to monitor their MCAS patients in the absence of specific MCAS guidelines.

Mastocytosis patients should monitor tryptase level annually. In mastocytosis patients, tryptase level is often a good marker for how many mast cells are in the body (although this is not always true.) If a patient’s tryptase is increasing over time, the provider will need to check other things to see if their disease is moving to a more serious disease category.

DEXA scans measure bone density. Osteoporosis is a common complication of systemic mastocytosis. Patients should receive regular osteoporosis screening, even if they are young.

Mastocytosis patients usually receive routine bloodwork annually that includes a complete blood count (CBC), which counts the amount of blood cells a person has; and a metabolic panel, which looks at how well the liver and kidneys are working.

Repeat biopsies are usually only done if the result will change treatment in some way. Most patients with systemic mastocytosis are diagnosed based upon bone marrow biopsies. These don’t usually need to be repeated unless tryptase level increases sharply or there are unusual results in routine blood count testing. Increasing tryptase can indicate that the body is making more mast cells much faster, which is sometimes linked to a more serious disease category. Unusual blood cell counts can indicate not just too many abnormal mast cells, but also other bone marrow conditions sometimes seen in mast cell patients, like myelofibrosis and essential thrombocythemia.

Patients with cutaneous mastocytosis are diagnosed by skin biopsy. There is not usually a need to repeat a skin biopsy for patients with CM.

Patients with systemic mastocytosis are usually diagnosed by bone marrow biopsy but can also be diagnosed as a result of a positive biopsy in any organ that is not the skin. A person can be diagnosed with SM via a GI biopsy.

GI biopsies are a little different than bone marrow biopsies in that there are sometimes reasons to repeat them. GI biopsies may be repeated to see if the general inflammation in the GI tract is improved or worsened. The provider may also be interested in whether or not the amount of mast cells in the GI tract has decreased. The result of GI biopsies often change treatment options so it is not unusual to repeat them. However, unlike bone marrow biopsies, repeated GI biopsies do not tell the provider if the mastocytosis is moving toward a more serious disease category or not.

MCAS patients are diagnosed based upon positive tests for molecules that indicate mast cells are overly active, like n-methylhistamine, and D2- or 9a,11b-F2 prostaglandins. Once the patient is diagnosed, there’s not a clear rationale for repeating these tests, although some providers do for their own information. Some providers like to check prostaglandin levels to see if treatment to stop mast cells from making prostaglandins (like use of aspirin or other NSAIDs) is helping.

However, it is important to understand that the level of mast cell mediators is not associated with symptoms. A person who has a normal level of 9a,11b-F2 prostaglandin may have the same symptoms as a person above the normal level, who may have the same symptoms as a person who has three times the normal level. For this reason, many providers consider these mediator tests to be less about the numerical value of the test and more about whether it’s normal or high, period.

For more detailed reading, please visit the following post:
The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 5
The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 6
The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 7
The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 8
The Provider Primer Series: Diagnostic criteria of systemic mastocytosis and all sub variants
The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)
The Provider Primer Series: Mediator testing
The Provider Primer Series: Mast cell activation syndrome (MCAS)

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 46

56. Why do I react every time I eat?

When you swallow food, your nervous system sends signals to tell the cells in the stomach that food is on the way. As a result of this neurologic signal, hormones are released to tell your stomach to get ready to digest. These hormones cause histamine to be released by cells in the stomach. The histamine tells your stomach to make acid to digest your food. Solid food is more activating to the stomach in this way than liquids are.

This is a normal function of the body and happens in everyone, not just people with mast cell disease. However, histamine released in the stomach can activate mast cells and cause typical mast cell symptoms. Like everything else in mast cell disease, how much this affects patients varies a lot. But something to keep in mind is that a lot of mast cell patients who are “allergic to everything they eat” are actually reacting to the normal histamine release that contributes to digestion. They are essentially allergic not just to what they are eating, but to the process of eating.

57. Do I have to go to the hospital every time I use an epipen?

Unless you have received very explicit instructions not to do so from a health care provider that is familiar with the particulars of your life and your health, you need to go to the hospital every time you use an epipen. The reason for this is because an epipen is a temporary measure. The purpose of the epipen is to give you time to get to a hospital for more advanced care. Epinephrine is broken down by your body in a matter of minutes so it only provides a small window of protection. While many patients only need one epipen, there is no way to know if you will have another wave of anaphylaxis after the first one. Additionally, many patients require other medications and IV fluids to treat anaphylaxis. These can be provided at a hospital.

The reason you have to go to the hospital is to give you access to more comprehensive care, not because using an epipen is dangerous.

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 47

  1. 58. What is mastocytic enterocolitis?

A high powered field (hpf) is what you see through a microscope when you use powerful magnifying lenses. With very few exceptions, high powered fields using the same lenses are the same size. Since they are the same size, you can directly compare results from various groups all over the world.

In 2006, a paper was published that coined the term “mastocytic enterocolitis”. The author described mastocytic enterocolitis as more than 20 mast cells per high powered field. This paper was about people with severe chronic diarrhea that did not improve with treatment. The author found that healthy people had about 13 mast cells/hpf while people with severe chronic diarrhea had about 20 mast cells/hpf. The author felt that the extra mast cells were responsible for the diarrhea and inflammation so they called the extra mast cells in the colon and the small intestine “mastocytic enterocolitis”. Enterocolitis is the term for inflammation in the small intestine and colon.

The author felt that 20 mast cells/hpf was the cutoff between a normal amount of mast cells in the GI tract and an abnormal amount. Under 20 was considered normal while 20 and above was considered abnormal. However, there have been a number of papers since that look at how many mast cells are present in the GI tract for patients with different conditions as well as healthy people. There are several conditions that can cause you to have 20 or more mast cells/hpf. (I wrote an exhaustive series on this in 2015-2016. Links are below.)

Additionally, in some situations, people have over 20 mast cells/hpf without having any symptoms. Sometimes healthy people without any GI conditions have over 20 mast cells/hpf. For this reason, there is not agreement about how many mast cells in the GI tract is too many. (If you’re looking for my opinion, I think the number for what is too many is around 25-30/hpf. This is just my opinion.)

In the last several years, some doctors have begun linking mastocytic enterocolitis to mast cell disease. This makes sense because we know that in those people, mast cell inflammation drives GI symptoms and damage. Mast cell patients certainly have a lot of inflammation in the GI tract so having extra mast cells there makes sense. Some experts think that mastocytic enterocolitis is a sign of mast cell activation syndrome and that patients with mastocytic enterocolitis all have mast cell activation syndrome.

Mastocytic enterocolitis is absolutely a real phenomenon. In these people, mast cells cause a lot of GI symptoms and damage the GI tract. Experts have not all agreed upon whether or not everyone with mastocytic enterocolitis has mast cell disease. Also, there are some researchers that feel that mastocytic enterocolitis is actually its own mast cell disease rather than just a feature of another mast cell disease like mast cell activation syndrome.

Currently, mastocytic enterocolitis is not recognized by the WHO as its own disorder. However, that could certainly change. It was only last year that MCAS was recognized by the CDC even though it was routinely recognized by researchers and providers. (Author’s note: This was initially published stating that the WHO recognized MCAS, rather than the CDC. MCAS has not yet been recognized by the WHO. This is a whopper mistake on my part. Many thanks to the reader who saw this. Sorry!) I personally expect this to change in the next few years as more mast cell patients are diagnosed and mastocytic enterocolitis is better recognized. I think it is suggestive of mast cell disease but I also think providers need to eliminate other possible causes for the extra mast cells in the GI tract.

For more detailed information, please visit these posts:

Mast cells in the GI tract: How many is too many? (Part One)

Mast cells in the GI tract: How many is too many? (Part Two)

Mast cells in the GI tract: How many is too many? (Part Three)

Mast cells in the GI tract: How many is too many? (Part Four)

Mast cells in the GI tract: How many is too many? (Part Five)

Mast cells in the GI tract: How many is too many? (Part Six)

Mast cells in the GI tract: How many is too many? (Part Seven)

Mast cells in the GI tract: How many is too many? (Part Eight)

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 3

I have answered the 107 questions I have been asked most in the last four years. No jargon. No terminology. Just answers.

6. What symptoms does mast cell disease cause?

  • Mast cell disease can cause just about any symptom. Seriously.
  • Mast cell disease can cause symptoms in every system of the body. This is because mast cells are found in tissues throughout the body. They are intimately involved in lots of normal functions of the human body. When mast cells are not working correctly, lots of normal functions are not carried out correctly. When this happens, it causes symptoms. In short, mast cells can cause symptoms anywhere in the body because they were there already to help your body work right.
  • Skin symptoms can include flushing, rashes, hives (urticaria), itching, blistering, and swelling under the skin (angioedema).
  • GI symptoms include nausea, vomiting, diarrhea, constipation, problems with the GI not moving correctly in general (GI dysmotility), swelling of the GI tract, chest and abdominal pain, belching, bloating, discolored stool, excessive salivation, dry mouth, and trouble swallowing.
  • Cardiovascular symptoms include high or low blood pressure, fast or slow heart rate, irregular heartbeat, and poor circulation.
  • Neuropsychiatric symptoms include brain fog, difficulty concentrating, difficulty sleeping at night, excessive tiredness during the day, grogginess, anxiety, depression, tremors, numbness, weakness, burning and tingling (pins and needles), hearing loss, and auditory processing (difficulty understanding what was said to you).
  • Genitourinary symptoms include bladder pain, painful urination, painful intercourse/sexual activities, painful or irregular menstrual cycle (periods), and excessive or inadequate urination (too much or too little urine produced).
  • Respiratory symptoms include cough, excessive phlegm, wheezing, runny nose, sinus congestion, sneezing, and swelling of the airway.
  • General symptoms include fatigue, lack of stamina, difficulty exercising, itchy or watery eyes, and bruising easily.
  • There are some additional symptoms that I have observed in a large number of people that are not classically considered mast cell symptoms, but I now firmly believe them to be. One is fever. I think discoloration of the skin may be mast cell related for some people. Another is dystonia, involuntary muscle contraction, which can mimic appearance of a seizure. There are also different seizure-type episodes that may occur due to the nervous system being overactive. I am reluctant to call them pseudoseizures because that term specifically means they are caused as a result of mental illness. I have no evidence that these seizure-type episodes in mast cell patients occur due to mental illness. I personally refer to them as “mast cell derived seizures.” (For people who are wondering, I have been heavily researching this phenomenon and have some theories about why this happens. It’s not fleshed out enough yet to post but it’s on my think list.)
  • Having mast cell disease can make you more likely to have other conditions that cause symptoms.
  • I’m sure there are other symptoms I have forgotten to mention.

7. Why are skin and GI symptoms so common?

  • The skin has a lot of mast cells relative to other tissues. Your skin also comes into contact with lots of things in the environment. Think about the things your skin touches on a daily basis! It makes sense that it would get the exposure so skin symptoms can be common. Additionally, some of the chemicals mast cells release can cause fluid to become trapped in the skin. For these reasons, symptoms affecting the skin are pretty common.
  • The GI tract also has a lot of mast cells relative to other tissues. Your GI tract also comes in contact with lots of things in the environment. Let’s think about this for a minute. Your GI tract is essentially one long tube through your body. You put things from the environment in your GI tract at the top and they come back out the bottom of the tract. In a way, your GI tract is kind of like the outside of the inside of your body.
  • This is the analogy I learned in anatomy and physiology class to visualizing the GI tract as the outside of the inside of the body. Think of the body as a donut. (A low histamine, fully allergy friendly, requires no GI motility, wonderful donut.) Now think of the GI tract as the donut hole. You can put your finger through the hole in the middle of the donut. Only that center part of the donut will touch your finger. This is kind of like putting food throughout the GI tract. That food only touches a very small part of the body as it passes through.
  • Since what we put into our mouths (or other GI openings) is from the outside, your body has many mast cells in the GI tract to protect the body. Some of the chemicals mast cells release can cause fluid to become trapped in the layers of GI tissue. Some of the medications we take for mast cell disease can affect the GI tract. Some of them change how much acid we make in our stomachs. Some of them slow down the GI tract. A few of them speed it up or make the GI tract more fragile. For these reasons, symptoms affecting the GI tract are very common.

For more detailed reading, please visit these posts:

The Provider Primer Series: Management of mast cell mediator symptoms and release

The Provider Primer Series: Mast cell activation syndrome (MCAS)

The Provider Primer Series: Cutaneous Mastocytosis/ Mastocytosis in the Skin

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (SM-AHD, MCL, MCS)

Reintroduction of food to a child with SM

I recently put together some recommendations on reintroducing foods to a child with SM who has been exclusively on IV nutrition (TPN) for an extended period of time. I thought you might find some use in it so I have posted it here.

Before people ask, there are no significant publications on children with MCAS because there are not currently unifying diagnostic criteria.


Author’s note: I am not a medical doctor. Protocols for reintroducing foods must be developed by the managing care team and tailored to each patient.

There are no large population studies for pediatric systemic mastocytosis. True systemic mastocytosis (in which WHO diagnostic criteria are satisfied) is rare in children. Accordingly, SM in children is generally reported as case reports rather than studies given the population size[i].

Given the lack of in depth literature specifically regarding food challenge in children with SM, I would draw from data in similar situations to identify a safe and appropriate protocol for reintroducing for [name redacted].

There are five scenarios that may contribute insight for food reintroduction in this patient: oral food challenges for FPIES patients; desensitization procedures for delayed hypersensitivity reactions; reintroduction of food after long term parenteral therapy; premedication of patients with mast cell activation disease, including systemic mastocytosis; and mast cell involvement in gastroparesis, ileus and GI dysmotility.

Based upon these scenarios, we can infer the following:

  • Reintroduction of food to this patient should follow a long, repetitive schedule with gradually increasing quantities.
  • Premedication with antihistamines and glucocorticoids to avoid mast cell reaction should be considered.
  • Mast cell activation can directly induce GI dysmotility. Drug management of mast cell activation can suppress impact upon function.
  • Enteral feeds should be gradually increased while parenteral feeds are gradually decreased.
Scenario Application to food reintroduction in a mast cell patient
1 Oral food challenge in setting of FPIES FPIES and food reactions secondary to mast cell disease are both non-IgE mediated and can culminate in shock requiring emergency intervention.
2 Desensitization for delayed drug hypersensitivity reactions Mast cell degranulation and anaphylactic reactions are not type I hypersensitivity reactions. They may also present on a delayed schedule.
3 Reintroduction of food after long term parenteral nutrition Reintroducing food to patients after long term parenteral nutrition may impact GI function. Gradual reintroduction is recommended.
4 Premedication of patients with mast cell activation disease Patients with mast cell activation disease, including systemic mastocytosis, are advised to premedicate prior to all procedures to decrease risk of reaction and anaphylaxis.
5 Mast cell involvement in gastroparesis, ileus, and GI dysmotility Mast cells contribute significantly to GI motility disorders including gastroparesis and ileus.


  1. Oral food challenge in patients with food protein induced enterocolitis syndrome (Caubet 2014[ii], Leonard 2011[iii])
  • Food protein induced enterocolitis syndrome (FPIES) is a severe non –IgE mediated GI food hypersensitivity syndrome.  Patients with FPIES are children. The condition is managed by removing the offending food from the diet for extended periods, usually years.
  • Food challenge in FPIES can result in severe, repetitive vomiting; diarrhea; lethargy; pallor; hypothermia; abdominal distension; and low blood pressure. Not all of these features are universally present for all patients.
  • The following procedure is recommended for oral food challenge in FPIES children:
  • All FPIES oral food challenges must be physician supervised with appropriate supportive care available.
  • Over the first hour, 0.06-0.6 g/kg body weight of food protein should be administered in three equal doses. It should not exceed 3g of total protein or 10g of total food or 100ml of liquid for initial feeding.
  • If patient has no reaction, give a full serving of food as determined by their age.
  • Observe patient for several hours afterward.
  • In the event of severe reaction, administer 1mg/kg methylprednisolone intravenously, up to 60-80 mg total; 20 ml/kg boluses of NS; and epinephrine.
  • Food challenge is considered positive for reaction if patient experiences typical symptoms as a direct result of the challenge.


  1. Desensitization for delayed hypersensitivity medication reactions (Scherer 2014[iv], Leoung 2001[v])
  • There are no controlled studies available on desensitization for delayed reactions to drugs.
  • Described procedures have timespans ranging from hours to weeks.
  • Patients who initially failed rapid protocols have succeeded using slower procedures.
  • It may take 2-3 days before hypersensitivity symptoms develop in a delayed reaction.
  • Long protocols with repetitive, gradually escalating dosing are recommended.
  • Antihistamine prophylaxis is often recommended. Drug and dosing vary.
  • The following procedure describes an example of a gradually escalating dosing:

Dose escalation for desensitization, adapted from antibiotic desensitization procedure

(Leoung 2001)[v]

Dosing level Drug portion Frequency of daily dosing
1 12.5% QD
2 25% BID
3 37.5% TID
4 50% BID
5 75% TID
6 100% QD


  1. Reintroduction of food after long term parenteral nutrition (Hartl 2009[vi], Oley Foundation)
  • Long term TPN may increase intestinal permeability.
  • Long term TPN may result in diminished enzymatic activity in GI mucosa.
  • The Oley Foundation suggests decreasing parenteral nutrition by 25% while increasing enteral feeds by 25% as the patient tolerates.


  1. Premedication of patients with mast cell activation disease (Castells 2016[vii])
  • Mast cell patients are recommended to premedicate for all procedures using H1 and H2 antihistamines, glucocorticoids, and leukotriene receptor antagonists.


  1. Mast cell involvement in gastroparesis, ileus, and GI dysmotility (Nguyen 2015[viii], de Winter 2012[ix])
  • Mast cells can be activated by a number of pathways which do not involve IgE, including neuropeptides, complement factors, cytokines and hormones.
  • Mast cells in the GI tract are closely associated with afferent nerve endings.
  • Mast cell behavior in the GI tract is largely controlled by the central nervous system.
  • Mast cells are directly involved in GI dysmotility disorders including gastroparesis and ileus.
  • Mast cell activation and population may be upregulated in the setting of GI inflammation.

[i] Lange M, et al. (2012) Mastocytosis in children and adults: clinical disease heterogeneity. Arch med Sci, 8(3): 533-541.

[ii] Caubet JC, et al. (2014) Clinical features and resolution of food protein induced enterocolitis syndrome: 10-year experience. J Allergy Clin Immunol, 134(2): 382-389.

[iii] Leonard S, et al. (2011) Food protein induced enterocolitis syndrome: an update on natural history and review of management. Ann Allergy Asthma Immunol, 107:95-101.

[iv] Scherer K, et al. (2013) Desensitization in delayed drug hypersensitivity reactions – an EAACI position paper of the Drug Allergy Interest Group. European Journal of Allergy and Clinical Immunology, 68(7): 844-852.

[v] Leoung GS, et al. (2011) Trimethoprim-sulfamethoxazole (TMP-SMZ) Dose Escalation versus direct rechallenge for Pneumocystis carinii pneumonia prophylaxis in human immunodeficiency virus-infected patients with previous adverse reaction to TMP-SMZ. Journal of Infectious Diseases, 184:992-997.

[vi] Hartl WH, et al. (2009) Complications and monitoring – Guidelines on Parenteral Nutrition, Chapter 11. Gen Med Sci, 7:Doc17.


[viii] Nguyen LA, et al. (2015) Clinical presentation and pathophysiology of gastroparesis. Gastroenterol Clin N Am, 44: 21-30.

[ix] de Winter BY, et al. (2012) Intestinal mast cells in gut inflammation and motility disturbances. Biochimica et Biophysica Act, 1822: 66-73.

Chromogranin A

Chromogranin A is a protein secreted in several environments. While it is primarily released in the adrenal medulla with catecholamines (norepinephrine, epinephrine, dopamine, and others), CgA is often found stored in the granules of endocrine cells in the GI tract. CgA is the precursor molecule for several active molecules. Vasostatin-1 and -2 are involved in regulation of various effects of the cardiovascular system, including blood pressure and stroke volume, by opposing the action of catecholamines. Catestatin decreases release of catecholamines. Pancreastatin decreases insulin secretion. A number of other molecules are also derived from CgA.

Chromogranin A and its derivatives are biomarkers for several conditions. 60-80% of neuroendocrine tumor patients demonstrated elevated chromogranin A. A connection with Alzheimer’s disease has recently been reported. Rheumatoid arthritis and lupus patients may have elevated CgA as a result of increased tumor necrosis factor. Various forms of cancer, kidney disease, and elevated cortisol can also impact chromogranin A level.

Elevated CgA has also been linked to a number of inflammatory GI conditions. 30-50% of IBD patients with active disease have elevated serum CgA. In ulcerative colitis, fecal chromogranins were elevated but not correlated with disease activity. Conflicting results have been seen in patients with Crohn’s disease. Some studies have reported an increased amount of CgA containing cells in patients with IBS.

There are a number of methods for quantifying chromogranin A. Proton pump inhibitors and H2 antihistamines can yield false positive results. A study compared several commercial kits for measuring chromogranin A and found that the radioimmunoassay (RIA) kit was most likely to be accurate with a sensitivity of 93% and specificity of 85%. This means that 93% of the time, this kit properly identified patients with high CgA as having high CgA, while 85% of the time, it properly identified patients with normal CgA as having normal CgA. Currently, there are multiple test methods for quantifying serum and plasma CgA with no central standardization.

Chromogranin A is a constituent of granules in rat mast cells. Tumor necrosis factor is a mediator released by mast cells and may also influence the levels of chromogranin A in mast cell patients. One study found that 31.5% of patients with mast cell activation disease (in a cohort mostly composed of MCAS patients) demonstrated elevation of serum CgA. This same study concluded that plasma heparin and 24 urine testing for prostaglandin D2 and 9a,11b-prostaglandin F2 were the most sensitive markers for mast cell activation with other mediators being less effective.


Gut P, et al. (2016) Chromogranin A – unspecific neuroendocrine marker. Clinical utility and potential diagnostic pitfalls. Arch Med Sci, 12(1): 1-9.

Wernersson S, Pejler G. (2014). Mast cell secretory granules: armed for battle. Nature Reviews Immunology, 14: 478-494.

D’Amico MA, et al. (2014) Biological function and clinical relevance of chromogranin A and derived peptides. Endocrin Connect, 3(2):R45-54.

Mazzawi T, et al. (2015) Increased chromogranin A cell density in large intestine of patients with irritable bowel syndrome after receiving dietary guidance. Gastroenterology Research and Practice, Article ID 823897.

Zenker N, Afrin LB. (2015) Utilities of various mast cell mediators in diagnosis mast cell activation syndrome. Blood, 126:5174.

Massironi S, et al. (2016). Chromogranin A and other enteroendocrine markers in inflammatory bowel disease. Neuropeptides, xxx, xxx-xxx.


My body is my adversary. I hardly remember a time when that was not the case. Even before I got sick, I struggled to make my body do the things I wanted it to. You can only do that so much before you begin to resent these shells we live in.

I was a small child, very small. I wasn’t four feet tall until eighth grade. That year, I grew a foot, and never again. Throughout elementary school, people commented on how small I was and how little I weighed. I was limber and very nimble; together with my lack of height, these characteristics gave me the body of a gymnast. I did splits and back handsprings and aerial cartwheels in my living room and backyard. I threw tricks during recess. I weighed so little that very little strength was required.

In seventh grade, I acquired the body of a woman overnight. I took ballet classes at that point in a small brown building around the corner from my house. One day, I caught my reflexion in the wall mirrors. I was rounder, with thick legs, breasts and a forming hourglass figure. I was still short but I wasn’t small.

I lamented the loss of my tiny frame but I wasn’t overly concerned with toning or losing weight. I walked a lot and was active if not athletic. In 2000, I started getting a three month birth control injection. In the months that I followed, I gained 26 lbs. I went from being thicker to being fat.

I was very unhappy with my body throughout college and grad school. I worked more than full time and carried a full course load. I picked up better eating habits when I got an apartment but I didn’t have time to exercise.

In 2007, I woke up in the middle of the night and while walking across my living room carpet to the bathroom, I realized my ass was jiggling. It actually stunned me awake. The next morning, I signed up to walk the Breast Cancer 3-day, 60 miles in three days, largely for the fitness aspect of the event. For the next six months, I walked increasing distances 3-4 days a week and did short workouts on the other days. I didn’t change my diet at all except for not drinking coke. I lost 25 lbs and gained a lot of muscle.

The summer of 2007 stands out for me as a time when I was happy with my body. I was still bigger than I wanted to be, but I was actively losing weight and felt much stronger and more able. I went backpacking in Scandinavia and was on strenuous mountain hikes without trouble. I took up rock climbing. I completed the 3-day and continued with the training schedule. Over the next three years, I would walk four more 3-days.

In 2009, I lost most of my hearing. I ended up on high dose oral steroids for a few weeks and quickly gained 20 lbs. My face was squishy and I was swollen everywhere and nothing fit anymore. At the same time, my disease was also accelerating. I still walked and tried to make time for yoga class but I was in a lot of pain and often too exhausted to work out. I gained more weight. And more.

By 2012, I weighed about 165 lbs. I started doing advanced yoga several times a week and was able to lose 10 lbs in about nine months. The following year, I had my colostomy placed and lost 10 more lbs. I was stably 145 lbs until the end of 2013 when I started high dose steroids again along with several other meds known to cause fluid retention and weight gain. I gained 30 lbs in six weeks and then gained a little more. My abdomen was so swollen that I looked nine months pregnant. I had to wear maternity clothes to accommodate my belly.

Decreasing steroids took off some weight but I was still much bigger than I wanted to be. In 2015, I had another GI surgery. I again lost 10 lbs almost immediately. Following the surgery, I was able to do a reconditioning program before I returned to work in order to build up my stamina and physical tolerance for exercise. I was less inflamed than before the surgery and reacting less. I was able to address several smaller concerns that had been on the back burner like vitamin D levels. Together, these changes allowed me to recondition effectively. I could exercise again, making it easier to manage my fitness. (For those interested, I describe my reconditioning program here.)

Over the next 18 months, I lost another 10 lbs. I found long, flat muscles in places I never expected to see. Even as I cursed my body for having this disease, I was happier with how it looked. I had to buy new clothes because even my smallest clothes, saved from previous years, were too big.

Last fall, I started dropping weight, much faster than I should have been. At the same time, I was having fevers, night sweats, and a slew of other symptoms I have written about. I countered the weight loss by eating more but I eventually developed gastroparesis and started throwing everything up. I am now getting some of my calories through 2L of IV fluids daily. I am now getting most of my calories from “nutritional drinks”. (My homemade version is Orgain chocolate protein powder, organic maple syrup, and almond milk.) I am tolerating it but I can’t drink it fast without getting nauseous. I’m not getting much fat in my diet and my body is now showing that.

I took a picture of myself tonight. For the first time, I was unsettled by how I looked. I am getting very thin. I am the smallest I have been as an adult. I can certainly lose more weight before I’m in danger but it was seriously jarring to see myself. I am leaving “you don’t look sick” territory.

So here I am at 3am thinking of ways to gain back weight that I spent years trying to lose. A different kind of adversary.


29 Jan 2017

29 Jan 2017 2




The Provider Primer Series: Relevance of mast cells in common health scenarios


Symptom Cough
Role of mast cells Several mast cell mediators contribute to airway inflammation and subsequent symptoms including cough:

•             Histamine promotes bronchoconstriction, excessive production of mucus, and airway edema.[i]

•             Prostaglandin D2 promotes bronchoconstriction, mucus production, and airway edema.[i]

•             Leukotrienes C4 and D4 and chymase also contribute to mucus production and airway edema.[i]

•             Tryptase promotes overall increased reactivity of the airway.[i]

Chronic airway inflammation, as in asthma, is sometimes associated with increased mast cell population in pulmonary tissues.[i]

Mast cells remain activated in inflamed airways.[i]

Impact of condition on mast cells Mast cell activation can occur as a result of the physical stimuli such as coughing[ii].

Pain can trigger mast cell activation[iii].

Notes regarding condition treatment Dextromethorphan can trigger mast cell degranulation[iv].

Codeine and derivatives can trigger mast cell degranulation[v].

Beta-2 adrenergic agonists, inhaled and oral steroids, and inhaled cromolyn are frequently used in mast cell patients[vi].

Notes regarding mast cell treatment Antihistamines, leukotriene receptor antagonists, and COX inhibitors are routinely taken by mast cell patients and can provide relief.[vii]

Racemic epinephrine can provide relief of pulmonary symptoms.[viii]

Special considerations for mast cell patients Chronic dry, unproductive cough sometimes occurs in mast cell patients.[ix]

Mast cell patients frequently have reactive airways.[ix]

Mast cells can produce and release prostaglandin E2, a mediator that participates in asthmatic inflammation and cough[x].

Prostaglandin E2 can also downregulate or promote mast cell degranulation via binding at prostaglandin E2 receptors on mast cell surface[x].


Symptom Sore throat
Role of mast cells Pain can trigger mast cell activation.[iii]
Impact of condition on mast cells Mast cell driven nasal congestion can result in postnasal drip can irritate the throat.[ix]

Mast cell irritation of the throat can present similarly to infection by Streptococcus spp. or other pathogen. Cultures should be taken to properly evaluate for infection.[ix]

Viral, bacterial and fungal infection will activate mast cells through toll like receptors and through perpetuated inflammatory signaling.[xiii]

Notes regarding condition treatment Acetaminophen is recommended for pain relief in mast cell patients.[iv]
Notes regarding mast cell treatment Antihistamines and COX inhibitors are routinely taken by mast cell patients and can provide relief.[vi]
Special considerations for mast cell patients Angioedema of the throat driven by mast cell disease is always a consideration in mast cell patients. If angioedema secondary to mast cell disease impinges upon airway, epinephrine and subsequent anaphylaxis treatments should be undertaken.[vii]

Oral allergy syndrome should be considered.[ix]


Symptom Rash
Role of mast cells Acute urticaria is usually driven by mast cell and basophil activation through IgE or non-IgE pathways.[xi]

Mast cell mediators histamine, leukotrienes and platelet activating factor contribute to itching.[xii]

Impact of condition on mast cells Viral, bacterial and fungal infection will activate mast cells via toll like receptors and perpetuated inflammatory signaling.[xiii]

Non-mast cell driven conditions causing skin rashes can irritate mast cells in the skin.[xii]

Pain can trigger mast cell activation.[iii]

Notes regarding condition treatment Some -azole antifungals can induce mast cell degranulation.[xiv]
Notes regarding mast cell treatment Antihistamines and steroids, topical or systemic, and topical cromolyn can provide relief.[xii]
Special considerations for mast cell patients Mediator release by activated mast cells can produce systemic symptoms.[x]

In patients with a history of mast cell disease, mastocytosis in the skin should be considered.

o             Cutaneous mastocytosis accounts for approximately 90% of mastocytosis cases.[xii]

o             Cutaneous mastocytosis lesions demonstrate Darier’s sign, a wheal and flare reaction to touch.[xii]

o             A skin biopsy is necessary to confirm a diagnosis of cutaneous mastocytosis.[xii]

o             Patients with adult onset cutaneous mast cell lesions are usually later found to have systemic mastocytosis.[xii]


Symptom Fever
Role of mast cells Mast cells can produce prostaglandin E2.[x]

Mast cells can produce and release several pyrogens, including IL-1α, IL-1β, IL-6, IL-8, TNF, interferon-α, interferon-β, and interferon-γ.[x]

Impact of condition on mast cells Prostaglandin E2 can also downregulate or promote mast cell degranulation via binding at prostaglandin E2 receptors on mast cell surface.[x]

Pain can trigger mast cell activation.[iii]

Viral, bacterial and fungal infection will activate mast cells via toll like receptors and perpetuated inflammatory signaling.[xiii]

Notes regarding condition treatment NSAIDS can trigger mast cell degranulation. Some mast cell patients are unable to take them.[xv]

Acetaminophen is generally recommended for use in mast cell patients.[iv]

Notes regarding mast cell treatment COX inhibitors are routinely taken by mast cell patients and may provide relief.[vi]
Special considerations for mast cell patients


Symptom Earache
Role of mast cells Mast cells are involved in the transmission of pain stimuli, including nerve pain.[iii]

Mast cells are involved in sensorineural hearing loss and tinnitus.[ix]

Impact of condition on mast cells Pain can trigger mast cell activation.[iii]

Viral, bacterial and fungal infection will activate mast cells via toll like receptors and perpetuated inflammatory signaling.[xiii]

Notes regarding condition treatment NSAIDS can trigger mast cell degranulation. Some mast cell patients are unable to take them.[xv]

Acetaminophen is generally recommended for use in mast cell patients.[iv]

Steroids (local and systemic) can stabilize mast cells.[vi]

Notes regarding mast cell treatment COX inhibitors are routinely taken by mast cell patients and may provide relief.[vi]

Antihistamines can provide relief for vestibular symptoms.[vi]

Special considerations for mast cell patients Hearing loss, tinnitus and hyperacusis sometimes occur in mast cell patients.[ix]

Sensorineural hearing loss of unknown origin has been documented in mast cell patients.[ix]

Some mast cell patients also have Ehlers Danlos Syndrome which can cause conductive hearing loss.[ix]

Mast cell disease can also cause auditory processing disorder.[ix]

Red ears are a common sign of mast cell activation. Sometimes, only one ear is affected.[ix]


Symptom Stomachache
Role of mast cells Mast cells are commonly found in the GI tract.[xvi]

Mast cell activation is involved in a number of GI conditions, including inflammatory bowel disease, ulcerative colitis and food allergies.[xvi]

Mast cell activation can cause chronic diarrhea, pseudoobstruction, obstruction, dysmotility, constipation, nausea, vomiting, and visceral GI pain.[xvi]

Impact of condition on mast cells GI inflammation can recruit mast cells to inflamed tissues.[xvi]

GI inflammation can trigger mast cell mediator release.[xvi]

Pain can trigger mast cell activation.[iii]

Viral, bacterial and fungal infection will activate mast cells via toll like receptors and perpetuated inflammatory signaling.[xiii]

Notes regarding condition treatment
Notes regarding mast cell treatment Histamine H2 blockers and PPIs are commonly taken by mast cell patients and can provide relief.[vi]
Special considerations for mast cell patients Mast cell patients can experience a wide array of severe GI symptoms with or without dense infiltration of GI tract by mast cells.[ix]


[i] Cruse G, Bradding P. (2016). Mast cells in airway diseases and interstitial lung disease. European Journal of Pharmacology 778, 125-138.

[ii] Zhang D, et al. (2012). Mast-cell degranulation induced by physical stimuli involves the activation of transient receptor-potential channel TRPV2. Physiol Res, 61(1):113-124.

[iii] Chatterjea D, Martinov T. (2015). Mast cells: versatile gatekeepers of pain. Mol Immunol, 63(1),38-44.

[iv] Dewachter P, et al. (2014). Perioperative management of patients with mastocytosis. Anesthesiology, 120, 753-759.

[v] Brockow K, Bonadonna P. (2012). Drug allergy in mast cell disease. Curr Opin Allergy Clin Immunol, 12, 354-360.

[vi] Molderings GJ, et al. (2016). Pharmacological treatment options for mast cell activation disease. Naunyn-Schmiedeberg’s Arch Pharmol, 389:671.

[vii] Molderings GJ, et al. Mast cell activation disease: a concise, practical guide to diagnostic workup and therapeutic options. J Hematol Oncol 2011; 4 (10).

[viii] Walsh P, et al. (2008). Comparison of nebulized epinephrine to albuterol in bronchiolitis. Acad Emerg Med, 15(4):305-313.

[ix] Afrin LB. (2013). Diagnosis, presentation and management of mast cell activation syndrome. Mast cells.

[x] Theoharides TC, et al. (2012). Mast cells and inflammation. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 1822(1), 21-33.

[xi] Bernstein JA, et al. (2014). The diagnosis and management of acute and chronic urticaria: 2014 update. J Allergy Clin Immunol, 133(5):1270-1277.

[xii] Hartmann K, et al. (2016). Cutaneous manifestations in patients with mastocytosis: consensus report of the European Competence Network on Mastocytosis; the American Academy of Allergy, Asthma and Immunology; and the European Academy of Allergology and Clinical Immunology. Journal of Allergy and Clinical Immunology, 137(1):35-45.

[xiii] Sandig H, Bulfone-Paul S. (2012). TLR signaling in mast cells: common and unique features. Front Immunol, 3;185.

[xiv] Toyoguchi T, et al. (2000). Histamine release induced by antimicrobial agents and effects of antimicrobial agents on vancomycin-induced histamine release from rat peritoneal mast cells.  Pharm Pharmacol, 52(3), 327-331.

[xv] Grosman N. (2007). Comparison of the influence of NSAIDs with different COX-selectivity on histamine release from mast cells isolated from naïve and sensitized rats. International Immunopharmacology, 7(4), 532-540.

[xvi] Ramsay DB, et al. (2010). Mast cells in gastrointestinal disease. Gastroenterology & Hepatology, 6(12): 772-777.


Take home points: August 2015

Gastroparesis: Part 1

  • GP is a condition in which stomach contents do not move into the small intestine in an appropriate time frame without an obvious anatomical reason
  • GP patients can have severe symptoms, including nausea, vomiting, abdominal pain and bloating
  • GP can be episodic or chronic
  • The degree of gastric emptying delay does not impact symptom severity
  • GP may affect up to 2% of the population
  • GP is increasing over the last twenty years with no clear reason as to why
  • Cisapride is effective for treating GP but was removed from the market
  • GP symptoms are generic and make the cause hard to identify
  • Idiopathic GP has no clear cause and affects up to 1/3 of GP patients

Gastroparesis: Treatment (Part 2)

  • Treating dehydration and electrolyte and nutritional deficiencies are key to initial GP management
  • 64% of GP patients do not consume enough daily calories
  • Vitamins A, B6, C and K, iron, potassium and zinc are often deficient in GP patients
  • Small meals with low fat and fiber are recommended
  • Liquids or blended solids often empty normally from stomach
  • Feeding tubes may be placed if malnutrition is significant
  • Metoclopramide is approved for GP but use longer than twelve weeks carries risks like dystonia
  • Domperidone is not approved in US for GP but can be imported through a special FDA program for GP
  • Medications to increase gastric motility, like erythromycin, are often used
  • Medications for nausea and vomiting are common, such as ondansetron, scopolamine, draonabinol and tricyclic antidepressions
  • Nortriptyline and desipramine are tricyclics of choice as amitryptline can cause delayed gastric emptying
  • Opiates can induce GP so meds like gabapentin, tramadol, tapentadol, pregabalin and nortriptyline are preferred for abdominal pain
  • Botox injection into pyloric sphincter can increase gastric emptying but doesn’t always improve symptoms
  • Acupuncture and gastric pacemaker are also options

Gastroparesis: Diabetes and gastroparesis (Part 3)

  • 40% of patients with type I diabetes have delayed gastric emptying
  • 20% of patients with type II diabetes have delayed gastric emptying
  • In 2004, 26.7% of GP patients had diabetes
  • Diabetic patients with GP are more likely to have nausa and vomiting as predominant symptoms
  • GP can hinder effective blood sugar management
  • High blood sugar is associated with GP and vagus nerve damage
  • Gastric electric stimulation (gastric pacemaker) works better when GP is caused by diabetes than GP from other causes
  • Effective GP management improves blood sugar management and A1C level

Gastroparesis: Post-surgical gastroparesis (Part Four)

  • Surgery is a common trigger for GP
  • Surgeries that manipulate the stomach are more associated with GP, like gastrectomy, fundoplication or weight loss surgery
  • Gastric inflammation associated with surgery inhibits GI motility
  • 7.2% of GP cases occur after gastrectomy or fundoplication
  • Nissen fundoplication is the most common cause of post-surgical GP
  • A follow up surgery after Nissen fundoplication can sometimes reverse GP
  • Surgeries that don’t manipulate the stomach can also cause GP, like removal of esophagus, lung transplant, and liver surgery

Gastroparesis: Less common causes (Part Five)

  • Parkinson disease, multiple sclerosis, muscular dystrophy, myopathy, scleroderma, Sjogrens, polymyositis and stroke can all cause GP.
  • 10.8% of GP cases are associated with connective tissue disorder
  • Pseudo obstruction syndromes and autonomic neuropathy can occur concurrently with GP
  • Viral infections can cause acute GP that usually resolves within a year
  • Spinal cord injury, hypothyroidism, hyperparathyroidism, Addison’s disease and use of opiates or anticholinergics can contribute to GP
  • GP occurs disproportionately in people who have had their gallbladders removed
    • Often, GP does not immediately follow gallbladder removal but can present months or years later
    • Gallbladder removal is also associated with conditions that can occur with GP such as chronic fatigue syndrome, fibromyalgia, depression and anxiety
    • GP patients who have had gallbladders removed are usually older women who are overweight despite not coming enough calories