The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 41

50. How does mast cell disease affect hearing?

For readers who don’t know, I lost the majority of my hearing in 2009. I am profoundly deaf in my left ear and have moderate to severe hearing loss in my right. This happened years before I was diagnosed with systemic mastocytosis or Ehlers Danlos Syndrome.

Mast cell disease affects hearing in multiple ways. Some related diagnoses also affect hearing.

Mast cells are involved in sensorineural hearing loss. The exact role of mast cells is still being researched but hearing loss is not an unusual complaint for mast cell patients. Mast cell disease can also cause auditory processing disorder. This condition makes it difficult to understand speech. Ringing in the ears (tinnitus) is also a symptom of mast cell disease.

Many mast cell patients also have Ehlers Danlos Syndrome (EDS), a disease in which the body makes defective connective tissue. EDS patients are vulnerable to both sensorineural hearing loss, in which the nerves don’t correctly transmit sound from the ear to the brain, and conductive hearing loss, in which the ear is not able to carry the sound waves correctly to the inner ear. Having both types of hearing loss, sensorineural and conductive, is called mixed hearing loss.

Many mast cell patients are deconditioned. This means that their body has undergone lots of changes as the result of not being active. Sensory processing is affected in deconditioned patients. In particular, sounds must be louder to be heard correctly. POTS patients sometimes experience something similar.

Having certain autoimmune disorders can increase the risk of autoimmune inner ear disease, resulting in hearing loss. Many mast cell patients also have autoimmune disease.

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 32

39. How are mast cell disease, Ehlers Danlos Syndrome and POTS connected? (Continued)

I’m answering this question in two parts because there is a lot of information to relay and it’s important that it is done clearly. This is the second part.

Mast cells are found throughout the body. There is no record of a person living without mast cells. They perform many essential functions. This is the reason why killing off all of a person’s mast cells is not a viable treatment for mast cell disease. While mast cells cause so many symptoms and problems for patients with mast cell disease, life is unsustainable without mast cells.

Let’s specifically consider just a few of the mast cell’s essential functions here and how they relate to POTS and EDS.

Mast cells help the body to regulate blood pressure and heart rate. Many of the mast cell’s chemicals do this so it happens in many different ways all stemming from mast cells. This means that when mast cells are not behaving appropriately, there are many ways in which this dysfunction can lead to not regulating blood pressure and heart rate correctly.

  • Histamine can affect blood pressure and heart rate differently depending upon how it acts on the body. If it uses the H1 receptors, it can cause low blood pressure. If it uses the H2 receptors, it elevates blood pressure. If it uses the H3 receptor, it can cause low blood pressure. When it does this at the H3 receptor, it’s because it tells the body not to release norepinephrine. Not releasing as much norepinephrine lowers heart rate and making the heart beat more weakly.
  • Prostaglandin D2 lowers blood pressure and causes fast heart beat. However, the molecule made by breaking down PGD2, called 9a,11b-PGF2 increases blood pressure.
  • Vasoactive intestinal peptide lowers blood pressure.
  • Heparin, chymase and tryptase can decrease blood pressure. They do this by helping to make a molecule called bradykinin. When this happens, a lot of fluid falls out of the blood stream and gets stuck in the tissues, causing swelling.
  • Thromboxane A2 increases blood pressure.
  • Many mast cell molecules affect the amount of angiotensin II. This molecule strongly drives the body toward high blood pressure. Some mast cell molecules that affect blood pressure this way include chymase and renin.

Another very essential function of mast cells is to make connective tissue. Mast cells help the body to shape itself correctly and to make tissue to heal wounds. When mast cells are not behaving appropriately, their dysfunction can interfere with making connective tissue and wound healing. It can cause wounds to heal very slowly or for there to be too much scar tissue. It can also cause the connective tissue to be too weak or too strong.

The interaction between POTS and mast cell disease

In POTS, the body is already predisposed toward not regulating blood pressure and heart rate correctly. When a person with POTS stands up, their body quickly causes the heart to beat very fast. When your body does this, it takes steps that cause mast cells to become activated. In turn, the mast cells release chemicals to try and regulate the heart rate. However, if you have mast cell disease, the mast cell may release the wrong chemicals, or too many chemicals, failing to regulate the heart rate. This in turn results in a situation where the body becomes very stressed. Stress activates mast cells, which results in more release of chemicals. Patients can very easily become trapped in a cycle where POTS and mast cell disease irritate each other.

POTS can be exacerbated by the use of medications that affect blood vessels. Medications that are vasodilators (that make the blood vessels bigger) are taken by many people, including mast cell patients. In some people, using medications that blocks the action of histamine or prostaglandins can help to improve symptoms of both POTS and mast cell disease. Conversely, some of the medications used to manage POTS, like beta blockers, can trigger mast cell reactions and raise the risk of anaphylaxis. However, some POTS treatments can also help alleviate mast cell symptoms, specifically the use of IV fluids.

A paper published in 2005 found that hyperadrenergic POTS was sometimes found in patients with mast cell activation disorders.

The interaction between EDS and POTS

POTS is a form of dysautonomia. Dysautonomia means dysfunction of the autonomic nervous system. This is the part of your nervous system that helps to control automatic functions like heart rate, blood pressure and digestion.

In EDS patients, the body does not make collagen correctly. Collagen is the most common connective tissue protein in the body. This can cause vascular laxity. Blood vessels change size depending upon how much blood they need to move through them. If they get larger, it is called vasodilation. When they get smaller, it is called vasoconstriction. When a person has vascular laxity, their vessels can get larger than they should and they can stay that way longer.

POTS is the most common form of orthostatic intolerance in HEDS. Orthostatic intolerance is when a patient has symptoms specifically as the result of standing up. All EDS patients have more autonomic symptoms than healthy people. Among patients with EDS, autonomic symptoms are more common and more severe in HEDS. 94% of HEDS patients have orthostatic symptoms, including lightheadedness, dizziness, palpitations, nausea, blurred vision, and anxiety. Dysautonomia is much worse in HEDS compared to CEDS and VEDS patients.

Patients with HEDS were found overall to have overactive sympathetic nervous systems. However, when their body needed to activate in response to regulate heart rate and blood pressure in response to changing position, their responses were not strong enough.

In EDS patients, the connective tissue does not support blood vessels enough. This makes the harder for the blood vessels to get the blood back to the right places when you stand up, exacerbating POTS.

The interaction between EDS and mast cell disease

Mast cells are involved in making and repairing connective tissue, which involves collagen. For this reason, there are many mast cells living in connective tissues. Mast cells are stimulated when the body is making or trying to make collagen. Because EDS causes the body to make collagen incorrectly, mast cells can become activated to try and make collagen and other connective tissue correctly. When mast cells in one place are activated a lot over a long time, they can activate other mast cells elsewhere, resulting in systemic symptoms.

The interactions among mast cell disease, POTS and EDS

It is undeniable that there is an association among mast cell disease, EDS and POTS. However, there is not much data published on this topic. There was a poster presented in 2015 that found some combination of EDS, POTS and MCAS in a group of 15 patients. This is a very small population and we need larger studies to understand incidence. There is ongoing work to tie this group of conditions to specific genetic markers. However, this also requires further investigation and more patients. In the absence of hard data, we are forced to use some early data and understanding of similar conditions to try and figure out exactly what happens. As more data comes out, this understanding may change.

This is very much a chicken and egg situation where it’s not clear exactly what begets what. EDS is a genetic disorder and considered primary. However, that does not necessarily mean POTS or mast cell disease is secondary in this scenario.

Regardless of which is the initiating condition, the relationship seems to be something like the following:

1. A patient has EDS. They make defective connective tissue. These defective tissues do not support the bodily organs and vessels properly.

2. A patient stands up. Blood quickly moves from the torso into the legs.

3. The blood vessels in the legs try become more narrow and more able to keep fluid in the bloodstream. However, in an EDS patient, the blood vessels are stretched out and not held in the right place because the connective tissue is too weak.

4. The blood vessels in the legs are not able to pump blood back to the heart quickly enough. The body interprets this as having low blood pressure.

5. The nervous system sends signals to increase heart rate to compensate for the “low” blood pressure.

6. The signals sent to increase heart rate activate mast cells.

7. Mast cells activate release mediators to try and regulate blood pressure and heart rate.

8. Mast cell mediators activate other mast cells, eventually affecting other parts of the body.

9. The molecules released by mast cells make blood vessels bigger and more leaky.

10. As fluid leaves the bloodstream and gets stuck in places where it can’t work (third spacing), blood pressure decreases and heart rate increases. This exacerbates POTS symptoms. The cycle repeats.

For more detailed reading, please visit these posts:

Cardiovascular manifestations of mast cell disease: Part 1 of 5

Cardiovascular manifestations of mast cell disease: Part 2 of 5

Cardiovascular manifestations of mast cell disease: Part 3 of 5

Cardiovascular manifestations of mast cell disease: Part 4 of 5

Cardiovascular manifestations of mast cell disease: Part 5 of 5

Hypermobility Type Ehlers Danlos Syndrome and Autonomic Dysfunction (Part 1)

Hypermobility Type Ehlers Danlos Syndrome and Autonomic Dysfunction (Part 2)

Hypermobility Type Ehlers Danlos Syndrome and Autonomic Dysfunction (Part 3)

Hypermobility Type Ehlers Danlos Syndrome and Autonomic Dysfunction (Part 4)

Hypermobility Type Ehlers Danlos Syndrome and Autonomic Dysfunction (Part 5)

Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 1

Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 2

Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 3

Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 4

Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 5

Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 6

Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 7

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 31

39. How are mast cell disease, Ehlers Danlos Syndrome and POTS connected?

I’m answering this question in two parts because there is a lot of information to relay and it’s important that it is done clearly.

Let’s talk about what EDS and POTS are first.

Ehlers Danlos Syndrome (EDS) is a connective tissue disease. It can be, and often is, inherited. About 1 in 5000 people have some form of EDS.

There are several subtypes of EDS. The ones you hear about most are called classical, vascular, and hypermobility. The different forms of EDS used to be distinguished by numbers (like Type I, Type II, etc) but now they use descriptive terms instead. Types I and II EDS are now called classical EDS (cEDS); type IV EDS is now called vascular EDS (vEDS); and type III EDS is now called hypermobility type (hEDS or htEDS). There are also other rare variants of EDS.

Each of these subtypes has distinguishing features that make them unique from the other forms of EDS. All forms of EDS cause major systemic dysfunction of connective tissue, the pieces of you that hold your body together and keep everything in the right place. Generally, in EDS patients, their connective tissues tear easily and heal slowly. They usually (but do not always) show hypermobility in their joints (being double jointed or overly flexibility). Skin that is very stretchy or that heals very poorly is common.

Because you have connective tissues holding your whole body together, EDS can affect your entire body. All patients are at risk for symptoms that specifically impact their joints, muscles and bones. VEDS can significantly affect life span because it increases the risk of an aneurysm or a blood vessel bursting. HEDS patients often have cardiovascular, GI, and neurologic symptoms. CEDS patients often display the trademark skin stretchiness and many have extraordinary difficulties in healing incisions and wounds. Of course, many EDS patients have other symptoms, and there is a lot of symptom overlap among these forms. I am just generalizing here.

There is no cure and treatment is largely about managing symptoms and complications. EDS is usually diagnosed by a geneticist. There are genetic markers for most forms of EDS that can be found with genetic testing. However, the most common form of EDS, hypermobility type EDS (hEDS), does not have a known genetic marker. For this reason, geneticists often assess how hypermobile a patient is and then uses that to support the diagnosis of hEDS.

Postural orthostatic tachycardia syndrome (POTS) is a form of orthostatic intolerance, which means symptoms and problems caused specifically by standing up. POTS patients have a big jump in heart rate when they stand up (increase of 30 beats per minute or heart rate over 120 beats/minute in adults) that is not due to a drop in blood pressure. POTS is a form of dysautonomia, an umbrella term that covers several conditions in which the body is not able to control some of the body’s automatic functions like heart rate and blood pressure. (For those wondering, automatic is not a typo, and I did not mean to write autonomic, which is related here.)

There are multiple types of POTS. I’m just going to cover neuropathic POTS and hyperadrenergic POTS as they are the most applicable here. POTS can be a primary or secondary condition. It can cause very severely disabling symptoms and effects. It can cause a huge array of symptoms, including dizziness; fainting; exhaustion; inability to exercise; nausea; vomiting; major GI disturbances (both diarrhea and constipation); inappropriate sweating; chest pain; coldness, numbness, pain and weakness of extremities; and anxiety. Some patients are unable to stand up at all.

Neuropathic POTS, the most frequently described, is thought to be the result of the veins in the legs not being able to pump blood effectively. When you stand up from a sitting position or laying down, a lot of blood that was in your torso quickly moves into your legs. This happens to everyone. In most people, the veins in your legs are able to tighten and squeeze effectively to pump that blood out of the legs and get it back to your heart. In neuropathic POTS, your veins don’t seem to be able to do this as well so the blood gets stuck in your legs. Your body interprets this as having low blood pressure even though you have enough blood and it’s just not where your body expects it. In response to the “low blood pressure”, your heart starts beating very fast to try and get enough oxygenated blood to every place in your body that needs it.

Hyperadrenergic POTS is less common but relatively more common in mast cell patients. In this form, the body makes too much adrenaline (and often other similar molecules like noradrenaline). These molecules work together to cause the nervous system to tell the heart to beat way too fast in response to standing up and that blood moving into your legs. In patients with hyperadrenergic POTS, blood pressure is often increased while the heart rate is also increased instead of being normal or low as in neuropathic POTS.

The second part of this question (question 39) will be up in a day or two. Sorry for the length but I don’t think there’s a way to answer this question both clearly and with brevity.

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Disease, Part 22

I answered the 107 questions I have been asked most in the last four years. No jargon. No terminology. Just answers.

  1. Does mast cell disease cause cognitive issues?
  • Yes.
  • The most common cognitive issue reported by mastocytosis patients is “brain fog”, a sort of difficulty in thinking and reacting normally.
  • Inability to focus, pay attention, find words, and keep things in short term memory are frequently reported by mast cell patients. Attentive deficit disorders are sometimes seen.
  • Aside from the effects of mast cell disease on your body, they also affect the lives of patients dramatically. 42% of mastocytosis patients in one study reported a high stress level. I would be willing to bet that across the entire population of mast cell patients, the number of people that feel a lot of stress is a lot higher than 42%. Many patients feel hopeless, guilty, or like a burden. While this is distinct from depression, a neurologic disorder, these feelings can make it hard for patients to focus or pay attention.
  • Mast cell disease can lower serotonin. Even where this is not the case, mast cells can greatly impact the way serotonin works in the body. Serotonin in a chemical that nerves and other cells use to talk to each other. It is also important in cognition. While this isn’t totally understood yet, it appears that increasing serotonin levels can improve memory and decrease impairment. It can also improve ability to learn things. Not enough serotonin was associated with memory and learning difficulties.
  • When mast cells are activated, your body thinks there is an emergency or an infection. It can activate a stress response. One of the things your body does during this response is release cortisol. Cortisol can further activate mast cells. It is also released by mast cells. Over time, more cortisol than normal can really fatigue the body. Long term stress response is associated with a lot of cognitive issues, including brain fog.
  • Mast cell disease is very disruptive to your sleep cycle. Personally, this is one of the hardest parts of the disease for me. Your body naturally starts releasing more histamine around 10pm, every night, for everyone. Mast cell patients often have worsened symptoms starting around then and continuing overnight.
  • Another mast cell mediator, prostaglandin D2 (PGD2), is the strongest known inducer of sleep in the body. Mast cell patients may have this in excess, making them even more tired.
  • Despite the common idea that histamine makes you drowsy, it actually keeps you awake. Many mast cell patients have insomnia because of the histamine release overnight. This translates to being exhausted during the day when histamine levels drop. Lack of sleep is a well documented cause of cognitive dysfunction.
  • Many mast cell patients have POTS or another form of dysautonomia. These conditions can prevent getting enough blood and oxygen to the brain.

For more information, please visit these posts:

Neuropsychiatric features of mast cell disease: Part 1 of 2

Neuropsychiatric features of mast cell disease: Part 2 of 2

MCAS: Neurologic and psychiatric symptoms


My body is changing. I am tired but do not sleep for twenty hours at a time. Bones and angles emerge as my swelling wanes. I exercise. I eat real food. I sleep at night.

At the same time, I am carefully engineering to encourage these continued changes. I still take a ton of medication. I still need IV fluids every day. I still need IV meds. I still need to manage my pain. I still need to be careful. This nethervoid I currently inhabit might never be mistaken for healthy, but it is healthy for me. It is stable at least, predictable. It is good for me.

Last week was composed of the oppressive, sticky summer days that Boston is known for. Heat, humidity and sunlight form my own personal triad of doom. I got halfway through my short walk between stations and started reacting badly. I went into a Starbucks and promptly threw up while hives appeared on my neck. All of my exposed skin was bright red. I took some Benadryl and drank some cold water and waited for things to calm down. They did. I continued on my way to work.

It is hard for me to gauge how bad I look on any given day, as I was for many years in a persistent reactive state. My only indication is that initial surprise when people look at me, that flash of concern as their eyes widen, a brief moment before they recover. I knew as soon as I got to work that I must look terrible.

We have a cold room at work that is essentially an enormous refrigerator. “Girl, you need to go stand in there,” one of my coworkers said with a supportive nod. So I did. It helped. When I emerged, multiple people told me they were worried I would anaphylax and to please take a cab home. I am so fortunate to work with this group of caring, wonderful people that understand my disease and want me to be safe.

I did end up taking a cab home. I didn’t want to, but I did. It’s hard for me to articulate why I didn’t want to, when I knew it was safer and easier, in a way that doesn’t make me sound crazy. Getting in that cab made me sad in this nebulous but palpable way.

Taking the train to work is a privilege. Going to work, cleaning your house, paying your bills, food shopping, making dinner, eating solids, crunching lettuce as you watch television, being part of the world. These are privileges. These are the things you miss when you are hospitalized or so tired that your whole body feels heavy or riding that knife’s edge of anaphylaxis because your body is fighting you on something you need to do.

All of the days you spend fighting – this is what it is for. You fight for these privileges. You fight to be in the world. These are the things you will miss. All you can ever hope for is to wake each day to a world full of mundane privileges.

Some days I want to take the train even if there is a chance I will get sick. Because there is a chance that I won’t. Once that was impossible. Maybe it will be again. Maybe tomorrow it will be impossible, but not today.

I am still sick. I am still in pain. I still have a poorly functioning GI tract. I still carry two Epipens and a backpack full of meds everywhere I go. I am still nauseous. After all of the effort put forth in the last three months, I did not get cured. I got to walk to work sometimes. I got to eat salad. I got to feel the sunlight on my skin. That’s what I got. And it’s enough, and even more than it’s enough, it’s amazing. All of this is amazing. I am alive this summer and I am alive in the heat and I am alive when I’m too hot and I’m alive in the sun.

You cannot always decide what you do, but you can always decide who you are. I cannot always walk in the summer sun, but I am always a person who wants to.

I choose to live in the world and to enjoy it and be alive. I choose this even when it might hurt me. I choose this even when it might kill me. It is where I want to be.

It is a privilege to participate in this world. It is a privilege to be alive.

My exercise program for POTS and deconditioning

I designed the following schedule for myself after being medically cleared to return to exercise following surgery. This routine is not appropriate for everyone. Please speak with your medical provider regarding safe ways to exercise.

I put together this routine for myself by integrating POTS/dysautonomia exercise programs and my own personal exercise history. Even on my most miserable days, I walk for 20-30 minutes, so walking is something that I can trust to not raise my heart rate. I also have been practicing vinyasa style yoga for over fifteen years and started with very easy seated poses and progressed to more fluid sequences (Sun Salutation A 3-5x, Sun Salutation B 3x, followed by whatever sequences I felt were reasonable for that day.)

For the first few weeks, I timed my exercise for about an hour after taking antihistamines. For weeks 1-3, I performed all of my allotted exercise for the day consecutively over about an hour. For weeks 4-8, walking was often broken up over the course of the day as this included walking I did as part of my commute. My first walk of the day occurs within an hour of taking my morning medications and I take meds about an hour before leaving work for the day to cover my commute home.

Slow walking: about 2.5-3 miles/hour
Moderate walking: about 3-3.5 miles/hour

For seated cardio, I just looked around online for some seated cardio that I could do at home. I found a few routines.

For standing cardio, I did various things like jumping jacks and high knees. I usually incorporated bodyweight exercises that I could modify, like squats and planks.

Walking was all done outside. Some was done at night and some during the day. I tried to limit walking during the middle of the day to the extent that it was possible because heat and sunlight trigger me. All other exercises were done in my air conditioned apartment.

If I felt like I needed a break while exercising, I took a break. So ten minutes of cardio does not always represent ten consecutive minutes, but rather a total of ten minutes performing cardio exercise.

As I added in more exercise, I increased to exercising four days a week, which means that sometimes I exercise twice in one day. Walking is also split up over the course of the day, as I previously mentioned.

Week One:

Three days:
Twenty minutes of slow walking
Ten minutes seated cardio
Twenty minutes stretching/seated yoga
Ten minutes slow walking

Week Two:

Three days:
Thirty minutes of slow/moderate walking
Ten minutes seated cardio
Ten minutes yoga
Ten minutes stretching

Week Three:

Three days:
Forty minutes of moderate walking
Twenty minutes yoga
Ten minutes stretching

One day:
Sixty minutes of walking

Week Four:

Two days:
Fifty minutes of moderate walking
Twenty minutes of yoga

One day:
Fifty minutes of moderate walking

Week Five:

Two days:
Fifty minutes of moderate walking
Twenty minutes of yoga

One day:
Fifty minutes of moderate walking
Ten minutes of standing cardio

One day:
Sixty minutes of moderate walking

Week Six:

Two days:
Sixty minutes of moderate walking
Twenty minutes of yoga

Two days:
Fifty minutes of moderate walking
Ten minutes of standing cardio

Week Seven:

Two days:
Sixty minutes of moderate walking
Twenty minutes of yoga

Two days:
Fifty minutes of moderate walking
Fifteen minutes of standing cardio

Week Eight:

Two days:
Fifteen-twenty minutes of standing cardio
Twenty minutes of yoga

Three days:
Sixty minutes of moderate walking


Edited on 29 Jan 2017 to include weeks 9-12 of this program:

Week Nine:

Two days:
Twenty minutes of standing cardio
Thirty minutes of yoga (intermediate)

Three days:
Sixty minutes of moderate walking

Week Ten:

Three days:
Twenty minutes of standing cardio
Forty minutes of yoga (intermediate)

Three days:
Sixty minutes of moderate walking

Week Eleven:

Three days:
Fifty minutes of yoga (intermediate/advanced, pace moderate/fast)

Three days:
Sixty minutes of moderate walking

Week Twelve:

Three days:
Sixty minutes of yoga (intermediate/advanced, pace moderate/fast)

Three days:
Sixty minutes of moderate walking

Independence Day

I live my life as a series of wagers. A lot of these wagers involve my health. I bet that I can fly if I take enough steroids. I bet that I will get better if I get an ostomy. I bet that I will be more stable if I use IV hydration. I bet that taking this med or that will make me less tired. Sometimes I win. Sometimes I don’t.

The last 18 months of my life have all been one large scale bet. It has been many months of moving the pieces around and trying to shove them into place. It has been emotional and stressful and scary.

I slept through the four weeks following my surgery. I did some other things too, but mostly I slept. One day while I was resting in bed, it occurred to me that all of the strength and stamina I had lost was perhaps for the best. There are few opportunities to reset your body and this was one of them. I wasn’t reacting because I was heavily medicating and resting most of the time. I realized that this might be an opportunity to rebuild my body in a calculated way.

Once I was cleared by my surgeon to exercise, I started an exercise program designed for POTS patients. It was pretty detailed (I’ll do a separate post about this) but involved cardio exercise 3-4 days a week. I haven’t been able to do cardio in years. But I figured it was worth a shot.

The first two weeks were brutally hard. Then it got easier. I am now on the sixth week of a twelve week program. For the first time in many years, I can do cardio (with premedication in a controlled environment) without having a reaction.

I went back to work last week. I took the train to and from work on Monday, Wednesday and Thursday, which also involves about a mile and a half of walking each day. It was pouring torrentially on Wednesday and hot as hell on Thursday. I was exhausted when I got home but I managed to get through each day without napping. I slept every night last week. Getting myself to and from work is a level of independence I have not achieved in a year.

I very rarely drive anymore because I can’t use some of my medications if I need to drive and I have been so reactive that that might have been dangerous. But I made a huge wager on Saturday: I drove myself an hour away to New Hampshire to celebrate the Fourth of July with my friends and nieces. I stayed overnight and went swimming today, deaccessing and reaccessing my port. I drove myself home after being in cold water and direct sunlight for over an hour, stopping at Whole Foods and doing my grocery shopping on the way. I cleaned my apartment, did laundry, made lunch for tomorrow, ironed my work clothes, and watched Shark Week. I did all these things without any help.

The Fourth of July is Independence Day in the US. As I watched the fireworks, it felt like I was celebrating my own personal Day of Independence. I don’t know how long this will last.  But I got this one great week and this one Fourth of July.  And maybe I’ll get more.

Deconditioning, orthostatic intolerance, exercise and chronic illness – Part 7

A number of studies have investigated whether loading with intravenous hydration solutions (saline, etc) or with a volume expander such as dextran can ameliorate symptoms associated with deconditioning. These studies have found that volume expansion (also called fluid or volume loading) can improve a number of symptoms in deconditioned patients, but does not improve exercise capacity. Multiple studies have found the best effects from intravenous saline in conjunction with exercise.

Shibata investigated whether orthostatic intolerance could be mitigated following bed rest with exercise and/or fluid loading (Shibata 2010). This study found that OI could be dextran solution (IV fluids) given after twenty days of bed rest was insufficient to control OI symptoms, but that it was successful when used in conjunction with a daily exercise program. This finding was important, as it indicated that low blood volume was not the exclusive factor in orthostatic intolerance.

Figueroa et al looked at the relationship between blood volume and exercise capacity in POTS patients (Figueroa 2014). They found that acute volume loading with IV saline reduces heart rate and improves orthostatic tolerance and other symptoms in POTS patients. Importantly, IV saline significantly increased the stroke volume, cardiac output and reduced systemic vascular resistance. However, IV saline did not affect peak exercise capacity or improve cardiovascular markers during exercise. So while IV saline does help symptoms in these deconditioned patients, it does not improve exercise capacity. The author notes that for this purpose, acute infusion may not be sufficient and may need to undergone chronically to see benefits on exercise physiology.

Whole body heating is known to increase cardiac output, constrict the blood vessels in the abdominal cavities, increase sympathetic nerve activity in the muscles and decrease vascular resistance in the skin. Taken together, these factors stress the regulatory mechanism of the cardiovascular system. One study (Keller 2009) found that acute expansion of blood volume (with dextran) completely mitigated the impact of heat stress on orthostatic tolerance. In short, receiving an infusion that increased the blood volume allowed the cardiovascular system to function properly in the face of a known stressor.

One study looked at the effect of fluid loading on orthostatic intolerance and blood flow in the brain (Jeong 2012). They found that following bed rest, volume loading alone prevented larger reductions in cerebral blood flow, but did not prevent orthostatic intolerance. Exercise and volume loading prevented orthostatic intolerance but did not affect cerebral blood flow. Importantly, aerobic or resistance exercise before bed rest did not prevent development of decompensation.

A 2000 paper notes that POTS symptom scores improved significantly following administration of IV saline (Gordon 2000). Additionally, a 2013 study evaluated the frequency and characterization of “brain fog”, a common term for the cognitive deficits associated with this (and other) conditions (Joyner 2013). 86% (56/66) of patients reported that IV saline was the most effective treatment for brain fog.

In summary, bolus IV fluids or volume expanders have been found to improve a number of symptoms in deconditioned patients, although they have not been found to improve exercise capacity. For this metric, a graded exercise program is recommended. 

(Author’s note: I have recently been made aware that the data supporting use of graded exercise for chronic fatigue patients was hugely flawed. I retract this statement at this time. For details on this topic, please refer to this Lancet article:

A 2008 paper compared POTS and deconditioning (Joyner 2008). The author pointed out that a number of parallels existed between the physiological changes seen in POTS patients and those seen in deconditioned patients. Additionally, he made note of the parallels between POTS, chronic fatigue syndrome and fibromyalgia and the fact that exercise training had seen benefits in all of them. Given the significant relationship between mast cell disease and POTS, and the large overlap in CFS, fibromyalgia and mast cell populations, it is a comfortable assumption that an effective treatment modality for CFS, POTS and fibromyalgia may also be effective for mast cell disease. It is my belief that this is the basis for the frequently discussed finding of mast cell patients that intravenous fluids ameliorate a number of symptoms.

Furthermore, there are special considerations for mast cell disease that make intravenous fluids likely to cause a positive change in symptom profile. The first is that mast cell degranulation can induce systemic effects on arterial tone, hypotension and vasodilation (Willingham 2009). The next is that hypotension is characteristic of systemic mastocytosis, and that hypotension and syncope may occur due to cerebral hypoperfusion (Ozdemir 2010). Lastly, it is well known that mast cell mediators, including histamine, serotonin and tryptase, can induce capillary leakage leading leading to edema, and that they can increase vascular permeability (He 1997). Taken together, these points indicate that a mast cell patient may lose volume from the bloodstream into the surrounding tissues, which can exacerbate an already existing tendency toward hypotension, in turn made worse by orthostatic intolerance.

Fluid loading in the form of intravenous fluids may decrease symptoms in mast cell patients due to deconditioning, orthostatic intolerance and the capillary leakage often seen as a result of mast cell disease, which is especially present following mast cell attacks and anaphylaxis.



Gordon VM., et al. Hemodynamic and symptomatic effects of acute interventions on tilt in patients with postural tachycardia syndrome. Clin Auton Res. 2000 Feb; 10(1): 29-33.

Ross, Amanda J., et al. What is brain fog? An evaluation of the symptom in postural tachycardia syndrome. Clin Auton Res 2013 Dec; 23(6): 305-311.

Raj, Satish R., et al. Postural orthostatic tachycardia syndrome (POTS). Circulation 2013; 127: 2336-2342.

Rocío A. Figueroa, et al. Acute volume loading and exercise capacity in postural tachycardia syndrome. J Appl Physiol 117:663-668, 2014.

He, Shaoheng, Walls, Andrew F. Mast cell activation may be all that is sufficient and necessary for the rapid development of microvascular leakage and tissue edema. European Journal of Pharmacology 1997; 328(1): 89-97.

Ozdemir, D., et al. Hypotension, syncope and fever in systemic mastocytosis without skin infiltration and rapid response to corticosteroid and cyclosporine: a case report. Case Reports in Medicine, Volume 2010 (2010), Article ID 782595.

Willingham DL, et al. Unexplained and prolonged perioperative hypotension after orthotopic liver transplantation: undiagnosed systemic mastocytosis. Liver Transpl 2009 Jul; 15(7): 701-8.

Keller, David M., et al. Acute volume expansion preserves orthostatic tolerance during whole body heat stress in humans. J Physiol 2009 Mar; 587(5): 1131-1139.

Sung-Moon Jeong , Shigeki Shibata , Benjamin D. Levine , Rong Zhang. Exercise plus volume loading prevents orthostatic intolerance but not reduction in cerebral blood flow velocity after bed rest. American Journal of Physiology – Heart and Circulatory Physiology 2012 Vol. 302 no. 2.

Shizue Masuki , John H. Eisenach , William G. Schrage , Christopher P. Johnson , Niki M. Dietz , Brad W. Wilkins , Paola Sandroni , Phillip A. Low , Michael J. Joyner. Reduced stroke volume during exercise in postural tachycardia syndrome. Journal of Applied Physiology 2007 Vol. 103 no. 4, 1128-1135.






Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 6

Exercise can be very effective in treating deconditioning due to orthostatic intolerance or other conditions. Exercise can exacerbate symptoms in deconditioned patients even when it is mild, and this effect will be more pronounced if exercising in hot weather or after eating. Recumbent exercise, rather upright, is ideal for deconditioned patients at the beginning of exercise regimens, as being upright more stress on the body.

There are some physical maneuvers that can be helpful in avoiding OI episodes or in managing them when they do occur.   A sustained hand grip will activate the sympathetic nervous system and raise blood pressure for a short time. This can be helpful when changing position or following triggering activities, such as eating a meal or exercising. Leg crossing while tensing muscles can also prevent blood from pooling in the leg veins. This is recommended when an OI episode first occurs, and for vasovagal syncope patients to prevent fainting.

One study regimen prescribed POTS patients to engage in recumbent exercise 2-4 times a week for 30-45 minute sessions. In this study, they attempted to keep heart rate at 75-85% of maximum heart rate. As patients continued and became more fit, upright exercise was added in slowly in the second or third week. The length of training sessions increased and sessions of maximum intensity was added gradually until there were two maximum sessions per week. Weight lifting started once a week as a 15-20 minute session and increased to twice weekly 30-40 minute sessions. At the end, patients were exercising 5-6 hours/week. The duration of this study was twelve weeks.

Of the 29 patients who completed this study, a number of cardiovascular markers were improved. Blood volume and plasma volume were both expanded. The peak oxygen uptake during exercise, usually low for POTS patients, was increased by 11%. The muscle in the left ventricle of the heart, often smaller than usual in POTS patients, increased by 8%. Both laying down and standing heart rates decreasing significantly. Quality of life improved significantly and at the conclusion, almost half of the patients who completed the training no longer met the criteria for POTS.

Another study had POTS patients begin exercising twice a week in recumbent exercise, such as rowing or swimming, for 30-45 minutes. They increased to four times per week. After three months, plasma and blood volumes were both increased, as well as total hemoglobin mass and red blood cell volume. Systolic and diastolic pressures were lower while standing. Standing heart rate was lower and the amount of blood pumped out of the heart was stable.

Multiple papers have noted that OI patients are motivated to exercise, but often exert themselves too much in the beginning and trigger symptoms that make it difficult to continue. Going slowly and building up your tolerance is critical here. It is the factor that will make this successful. As an example, when I was very POTSy last year after several days of bed rest, I was advised that I could only stand for 10 minutes a day for an entire week. I could increase by ten minutes every week until I got to sixty, at which point I could resume normal activity. It was incredibly frustrating and drove me crazy, but I was able to get my orthostatic symptoms under control. Gradually increasing activity for OI patients is tried and true.

For severely disabled patients, it may not be practical to begin with recumbent aerobic exercises. If this is the case, gentle stretching and very low impact moves are good to start.

Following this, short workouts preceded by 5-10 minutes of stretching can be added. Target heart rate of 75-80% has been cited as desirable in some publications. Of utmost importance is the use of recumbent exercises, like rowing, swimming or recumbent cycling. Start slow. Dysautonomia International has a great breakdown on their site for how long you should workout at this stage.

Following several weeks of success, normal weekends can be introduced. Some patients are able to recover significant capability, running marathons and so on. It is recommended that POTS patients who are significantly conditioned exercise for at least 45 minutes three times a week.

While OI is a prime example of deconditioning as so many of its patients are deconditioned (95% of POTS patients and 91% of OI patients in one study), it is not the only condition associated with deconditioning that can be significantly improved with exercise.

In various studies with chronic fatigue syndrome patients, 60-84% said they felt better or much better after a graded exercise program. A study with fibromyalgia implemented three times a week workouts of sixty minutes, which included 10 minutes of slow walking, 20 minutes of aerobic exercise at 60-70% max heart rate, 20 minutes stretching and strength training, and 10 minutes cooling down. This program was highly successful for a number of patients.

Given the variety of illnesses which produce secondary deconditioning, and the success achieved by their patient populations with graded exercise, it is reasonable to assume that graded exercise may provide conditioning benefits to the mast cell population. Mast cell patients have the addition concerns that mast cells can be mechanically degranulated by the motions associated with vigorous exercise and that heat and sweating may be triggering, so exercise should be undertaken carefully and never alone. Some patients find utility in premedicating with H1 and H2 antihistamines before exercising. Please consult with your healthcare provider prior to beginning an exercise regimen.



De Lorenzo, H. Xiao, M. Mukherjee, J. Harcup, S. Suleiman, Z. Kadziola and V.V. Kakkar. Chronic fatigue syndrome: physical and cardiovascular deconditioning. Q J Med 1998; 91:475–481.

Hasser, E. M. And Moffitt, J. A. (2001), Regulation of Sympathetic Nervous System Function after Cardiovascular Deconditioning. Annals of the New York Academy of Sciences, 940: 454–468.

Mathias, C. J. et al. Postural tachycardia syndrome – current experience and concepts. Nat. Rev. Neurol. 8, 22–34 (2012).

Parsaik A., et al. Deconditioning in patients with orthostatic intolerance. Neurology 2012; 79; 1435.

Benarroch, Eduardo E. Postural tachycardia syndrome: a heterogeneous and multifactorial disorder. Mayo Clin Proc 2012 Dec; 87(12): 1214-1225.

Shizue Masuki , John H. Eisenach , William G. Schrage , Christopher P. Johnson , Niki M. Dietz , Brad W. Wilkins , Paola Sandroni , Phillip A. Low , Michael J. Joyner. Reduced stroke volume during exercise in postural tachycardia syndrome. Journal of Applied Physiology Published 1 October 2007 Vol. 103 no. 4, 1128-1135.

Sung-Moon Jeong , Gyu-Sam Hwang , Seon-Ok Kim , Benjamin D. Levine , Rong Zhang. Dynamic cerebral autoregulation after bed rest: effects of volume loading and exercise countermeasures. Journal of Applied Physiology 2014 Vol. 116 no. 1, 24-31.




Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 4

Syncope, also called fainting, is the loss of consciousness caused by temporary loss of blood supply to the brain, followed by complete recovery. About 40% of people will faint in their lifetime and half of them will first faint as teenagers, around the age of 15. Fainting can be caused by orthostatic hypotension. Otherwise, it can occur for cardiac or neurologic reasons (also called reflex syncope). One type of reflex syncope is vagovagal syncope, which can be further divided into postural syncope (fainting upon standing) and emotional or phobic syncope (fainting due to unpleasant psychological stimuli).

Vagovagal syncope has been attributed to several things, but none have been definitively proven. Some patients have decreased presence of enzymes that mediate blood pressure, like norepinephrine transportase (NET). Some have insufficient circulation in the abdominal cavity. As vasovagal syncope is often preceded by lightheadedness, sweating, weakness, nausea and visual disturbances, it can be difficult to distinguish between VVS and POTS. However, VVS patients often go long periods without OI symptoms, which only occur immediately before syncope.   Postural syncope and POTS are also associated with increased rate and depth of breathing in order to meet oxygen needs during these episodes.

Ingestion of 16 ounces of water in five minutes is known to effectively treat OI episodes of all types. It begins to have effect in about twenty minutes. It is important that this water not have solutes; that is to say, it should be pure water. Effects can last for hours.

There are a number of precipitating factors that can induce OI symptoms in susceptible patients. Avoidance is a key treatment modality. These factors include large meals, sudden postural changes, laying down for extended periods of time, environmental heat, alcohol, vasodilators* and sympathomimetic drugs, such as methylphenidate. (*It is worth noting that mast cell disease is inherently vasodilatory).

For both orthostatic hypotension and neurogenic POTS patients, physical maneuvers and compression garments can decrease venous pooling of blood. Increasing both salt and water intake can be helpful to expand plasma volume; 1.5-2L is recommended for adults.

Medications that retain salt and water, such as fludrocortisone, may be tried as well. Pressor drugs with short half lives, such as midodrine and pyridostigmine, are also used in these patients. Droxidopa is used outside of the US. Other meds, such as clonidine, also see some utility. Exercise is also encouraged as a treatment option (will be detailed in a follow up post).

HyperPOTS is often treated with beta blockers. (WARNING: beta blockers interfere with the action of epinephrine and should be used cautiously in mast cell patients). Angiotensin receptor blockers like Cozaar have been used, as has droxidopa. Exercise is likewise suggested for treatment of this patient group.

Water ingestion is recommended for patients with vasovagal syncope. Additionally, physical maneuvers are advised upon the onset of OI symptoms.



Stewart, Julian M. Update on the theory and management of orthostatic intolerance and related syndromes in adolescents and children. Expert Rev Cardiovasc Ther 2012 November; 10(11): 1387-1399.

Benarroch, Eduardo E. Postural tachycardia syndrome: a heterogenous and multifactorial disorder. Mayo Clinic Proceedings 2012; 87(12): 1214-1225.