Skip to content

leukotrienes

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, part 8

I have answered the 107 questions I have been asked most in the last four years. No jargon. No terminology. Just answers.

14. Are there any special instructions for the tests to diagnose mast cell disease?
• There are a lot of tests used to diagnose mast cell disease. There are certainly people who slip through the cracks with the current diagnostic criteria.
• Remember this as you read the following: DO NOT, UNDER ANY CIRCUMSTANCES, EVER, DISCONTINUE MEDICATION FOR TESTING WITHOUT EXPLICIT INSTRUCTIONS TO DO FROM A DOCTOR THAT UNDERSTANDS MAST CELL DISEASE. Stopping medications for mast cell disease can be very dangerous.
• The biopsy forms the centerpiece of diagnosis of both cutaneous and systemic forms of mastocytosis.
You can increase your chance of positive skin biopsy by choosing either a permanent lesion or an area of skin that is frequently reactive.
• For internal organs, including bone marrow, you can’t always tell where to biopsy just by looking. The area may look normal but show inflammation when viewed with a microscope.
• If patients do not need to take daily corticosteroids because they do not make their own (adrenal insufficiency or Addison’s disease), they are often recommended to not use corticosteroids (prednisone or similar) for five days before a bone marrow biopsy. Taking corticosteroids can tell your body to make a lot of extra white blood cells which can make it harder to give a correct diagnosis.
• The CKIT D816V mutation test is often done on a blood sample. It is much more accurate when a bone marrow biopsy is tested because there are many more mast cells. Mast cells do not live in the blood so the blood test is less accurate. If the test is positive in blood, we assume that the patient is truly positive. If the test is negative in blood, we are not sure if the patient is truly negative.
• Serum tryptase is a test with a lot of caveats. It is influenced heavily by timing and patient factors like weight. Many people with mast cell disease have normal serum tryptase. It is good for tracking progression of disease in patients with systemic mastocytosis.
• About 85% of patients with systemic mastocytosis have a baseline tryptase value over 20 ng/mL. Patients with monoclonal mast cell activation syndrome may also have baseline tryptase value over 20 ng/mL. For these patients, they should have two different tests from days when they are not especially reactive, or have had anaphylaxis.
• For patients with mast cell activation syndrome, we are often looking for an increase in tryptase during a reaction or anaphylactic event. In these patients, experts recommend having blood drawn 15 minutes to 4 hours after onset of the event.
• Another sample should be drawn 1-2 days later so that you have a sample to compare with the tryptase level during the event. Many experts accept a level increased by 20% plus 2 ng/mL above the baseline to be indicative of mast cell activation. (I made a typo on this that said 20% to 2 – sorry!)
• As we have previously discussed, many mast cell mediators should be kept cold because they break down quickly. 24 hour urines for n-methylhistamine, prostaglandin D2, 9a,11b prostaglandin F2, and leukotriene E4 should be kept cold.
Performing a 24 hour urine when you are having a reaction event can increase the likelihood of mediator release.
COX inhibitors will interfere with prostaglandin production. Some patients stop these meds before giving 24 hour urines for prostaglandin testing. DO NOT STOP MEDS WITHOUT BEING ADVISED BY AN EXPERIENCED MAST CELL PROVIDER.
Lipoxygenase inhibitors will interfere with leukotriene production. Some patients stop these meds before giving 24 hour urines for leukotriene testing. DO NOT STOP MEDS WITHOUT BEING ADVISED BY AN EXPERIENCED MAST CELL PROVIDER.
• Heparin is very heat sensitive. Plasma heparin must be kept cold. One study reported that a tourniquet on the upper arm for ten minutes before drawing the sample increased the change of detecting mast cell activation with this test.
• Chromogranin A is influenced by many other conditions and medications. It is important that those other conditions be ruled out. This may require lengthy body scans and other tests. Chromogranin A is influenced by proton pump inhibitors, meds that are commonly taken by mast cell patients. DO NOT STOP MEDS WITHOUT BEING ADVISED BY AN EXPERIENCED MAST CELL PROVIDER.

For more detailed reading, please visit these posts:

The Provider Primer Series: Mediator testing

Patient questions: Everything you wanted to know about tryptase

The Provider Primer Series: Mast cell activation syndrome (MCAS)

The Provider Primer Series: Cutaneous Mastocytosis/ Mastocytosis in the Skin

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (SM-AHD, MCL, MCS)

The Provider Primer Series: Mediator testing

Evidence of mediator release

  • Mast cells produce a multitude of mediators including tryptase, histamine, prostaglandin D2, leukotrienes C4, D4 and E4, heparin and chromogranin A[i].
  • Objective evidence of mast cell mediator release is required for diagnosis of MCAS (Castells 2013)[ii], (Akin 2010)[iii], (Valent 2012)[iv].
  • Serum tryptase and 24 hour urine testing for n-methylhistamine, prostaglandin D2, prostaglandin 9a,11b-F2 are frequently included in MCAS testing recommendations (Castells 2013)[ii], (Akin 2010)[iii], (Valent 2012)[iv].
  • It can be helpful to test for other mast cell mediators including 24 hour urine testing for leukotriene E4[v]; plasma heparin[ix]; serum chromogranin A[ix]; and leukotriene E4[ix].

Tryptase

  • Tryptase is extremely specific for mast cell activation in the absence of hematologic malignancy or advanced kidney disease. Of note, rheumatoid factor can cause false elevation of tryptase[ix].
  • Serum tryptase levels peak 15-120 minutes after release with an estimated half-life of two hours[vi].
  • Per key opinion leaders, tryptase levels should be drawn 15 minutes to 4 hours after onset of anaphylaxis or activation event (Castells 2013[ii]), (Akin 2010[iii]), (Valent 2012)[iv]). Phadia, the manufacturer of the ImmunoCap® test to quantify tryptase, recommends that blood be drawn 15 minutes to 3 hours after event onset[vii].
  • Serum tryptase >11.4 ng/mL is elevated[i]. In addition to measuring tryptase level during the event, another sample should be drawn 24-48 hours after the event, and a third sample drawn two weeks later. This allows comparison of event tryptase level to baseline[vi].
  • An increase in serum tryptase level during an event by 20% + 2 ng/mL above patient baseline is often accepted as evidence of mast cell activation[v],[i].
  • Absent elevation of tryptase level from baseline during an event does not exclude mast cell activation[viii].
  • Sensitivity for serum tryptase assay in MCAS patients was assessed as 10% in a 2014 paper[ix].
  • A recent retrospective study of almost 200 patients found serum was elevated in 8.8% of MCAS patients[x].
  • Baseline tryptase >20.0 ng/mL is a minor criterion for diagnosis of systemic mastocytosis. 77-85% of SM patients have baseline tryptase >20.0 ng/mL[ix].

Histamine and degradation product n-methylhistamine

  • N-methylhistamine is the breakdown product of histamine.
  • Histamine is degraded quickly. Samples should be drawn within 15 minutes of episode onset[vii].
  • Serum histamine levels peak 5 minutes after release and return to baseline in 15-30 minutes[vii].
  • Sample (urine or serum) must be kept chilled[xi].
  • In addition to mast cells, histamine is also released by basophils. Consumption of foods or liquids that contain histamine can also inflate the level when tested[ix].
  • A recent retrospective study of almost 200 patients found that n-methylhistamine was elevated in 7.4% of MCAS patients in random spot urine and 5.4% in 24-hour urine[xi].
  • Sensitivity of 24-hour n-methylhistamine for MCAS was assessed as 22% in 24-hour urine[ix].
  • Plasma histamine was elevated in 29.3% of MCAS patients[xi].
  • 50-81% of systemic mastocytosis patients demonstrate elevated n-methylhistamine in 24-hour urine[ix].

Prostaglandin D2 and degradation product prostaglandin 9a,11b-F2

  • 9a,11b-prostaglandin F2 is the breakdown product of prostaglandin D2.
  • Prostaglandin D2 is only produced in large quantities by mast cells. Basophils, eosinophils and other cells produce minute amounts[ix].
  • A recent retrospective study of almost 200 patients found that PGD2 was elevated in 9.8% of MCAS patients in random spot urines and 38.3% in 24-hour urine[xi].
  • PGD2 was elevated in 13.2% of MCAS patients in plasma[xi].
  • 9a,11b-PGF2 was elevated in 36.8% in 24-hour urine[xi].
  • 62-100% of systemic mastocytosis patients demonstrate elevated prostaglandin D2 or 9a,11b-PGF2 in urine[ix].
  • Prostaglandins are thermolabile and begin to break down in a minutes. This can contribute to false negative results[xi].
  • Medications that inhibit COX-1 and COX-2, such as NSAIDs, decrease prostaglandin production[xi].

Leukotriene E4

  • Leukotriene E4 is produced by mast cells and several other cell types[ix] including eosinophils, basophils and macrophages.
  • A recent retrospective study of almost 200 patients found that LTE4 was elevated in 4.4 % of MCAS patients in random spot urines and 8.3% in 24-hour urine[xi].
  • 44-50% of systemic mastocytosis patients demonstrate elevated leukotriene E4 in urine[ix].
  • Medications that inhibit 5-LO, such as lipoxygenase inhibitors, decrease leukotriene production[xii].

Chromogranin A

  • Chromogranin A is produced by mast cells and several other cell types including chromaffin cells and beta cells.
  • Proton pump inhibitors can cause increased values during testing[xi].
  • A 2014 paper reported chromogranin A was elevated in 12% of MCAS patients and 63% of systemic mastocytosis patients tested[ix].

Heparin

  • Heparin is a very specific mediator for mast cell activation[ix].
  • Heparin is extremely heat sensitive. The sample must be kept on ice or refrigerated at all times[ix].
  • Venous occlusion of upper arm for ten minutes has been successful in provoking mast cell activation leading to heparin release[ix].
  • A 2014 paper reported plasma heparin was elevated in 59% of MCAS patients and 47% of systemic mastocytosis patients tested[ix].
  • A recent retrospective study of almost 200 patients found that plasma heparin was elevated in 28.9% tested[ix].

 

References

[i] Theoharides TC, et al. (2012). Mast cells and inflammation. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 1822(1), 21-33.

[ii] Picard M, et al. (2013). Expanding spectrum of mast cell activation disorders: monoclonal and idiopathic mast cell activation syndromes. Clinical Therapeutics, 35(5), 548-562.

[iii] Akin C, et al. (2010). Mast cell activation syndrome: proposed diagnostic criteria. J Allergy Clin Immunol, 126(6), 1099-1104.e4

[iv] Valent P, et al. (2012). Definitions, criteria and global classification of mast cell disorders with special reference to mast cell activation syndromes: a consensus proposal. Int Arch Allergy Immunol, 157(3), 215-225.

[v] Lueke AJ, et al. (2016). Analytical and clinical validation of an LC-MS/MS method for urine leukotriene E4: a marker of systemic mastocytosis. Clin Biochem, 49(13-14), 979-982.

[vi] Payne V, Kam PCA. (2004). Mast cell tryptase: a review of its physiology and clinical significance. Anaesthesia, 59(7), 695-703.

[vii] Phadia AB. ImmunoCAP® Tryptase in anaphylaxis. Retrieved from: http://www.phadia.com/Global/Market%20Companies/Sweden/Best%C3%A4ll%20information/Filer%20(pdf)/ImmunoCAP_Tryptase_anafylaxi.pdf

[viii] Sprung J, et al. (2015). Presence or absence of elevated acute total serum tryptase by itself is not a definitive marker for an allergic reaction. Anesthesiology, 122(3), 713-717.

[ix] Vysniauskaite M, et al. (2015). Determination of plasma heparin level improves identification of systemic mast cell activation disease. PLoS One, 10(4), e0124912

[x] Zenker N, Afrin LB. (2015). Utilities of various mast cell mediators in diagnosing mast cell activation syndrome. Blood, 126(5174).

[xi] Afrin LB. “Presentation, diagnosis and management of mast cell activation syndrome.”  Mast Cells, edited by David B. Murray, Nova Science Publishers, Inc., 2013, 155-231.

[xii] Hui KP, et al. (1991). Effect of a 5-lipoxygenase inhibitor on leukotriene generation and airway responses after allergen challenge in asthmatic patients. Thorax, 46, 184-189.

The effects of cortisol on mast cells: Part 2 of 3

Glucocorticoids, like cortisol, can affect mast cells in many ways. As I discussed in my previous post, there are many ways for mast cells to release mediators when activated. In all of these pathways, there are many molecules involved that carry the signal, like people passing the Olympic torch. In mast cells, one of the molecules that suppresses inflammatory activation signal is called SLAP (yes, really).  Cortisol increases the amount of SLAP in mast cells so inflammatory activation signals are suppressed.

An important step in degranulation is changing the amount of calcium inside the cell and moving it to different parts of the cell. In some studies, glucocorticoids can affect this movement of calcium. Other studies have found that in some pathways, glucocorticoids don’t affect calcium movement, but instead interfere with things like the IgE receptor.

Cortisol is also thought to directly inhibit stem cell factor (SCF) binding to the CKIT receptor. When SCF binds to the CKIT receptor, this sends a signal to the mast cell to stay live.  This means that taking glucocorticoids can let mast cells die at the appropriate time. SCF also tells mast cells to go to inflamed spaces.  By blocking this signal, glucocorticoids suppress inflammation.

One of the ways that molecules carry a signal is by changing the next molecule in the pathway. A big way that cells changing molecules is by chopping off a piece of them called a phosphate group.  This is done by special enzymes called phosphatases.  Glucocorticoids affect the availability of phosphatases so they aren’t able to get to the right part of the cell to carry the signal.  When this happens, there is less activation and less histamine release.

Arachidonic acid is the molecule modified to make eicosanoids (leukotrienes, thromboxanes and prostaglandins.) Glucocorticoids directly interfere with the production of these molecules in multiple ways.  The first way is by interfering with COX-2, one of the enzymes that makes prostaglandins.  Another way is by preventing arachidonic acid from being released to a place where they can be turned into leukotrienes, thromboxanes and prostaglandins.  This occurs because glucocorticoids increase the amount of a powerful anti-inflammatory molecule called annexin-I.  Annexin-I inhibits the molecule that releases the arachidonic acid, called phospholipase A2.

Annexin-I was the subject of an important paper earlier this year. In trying to identify exactly how mast cell stabilizers like ketotifen and cromolyn work, the researchers discovered that treatment with mast cell stabilizers decreased degranulation and increased annexin-I made by mast cells.  They also found that glucocorticoids had the same effect.

References:

Oppong E, et al. Molecular mechanisms of glucocorticoid action in mast cells. Molecular and Cellular Endocrinology 2013: 380, 119-126.

Varghese R, et al. Association among stress, hypocortisolism, systemic inflammation and disease severity in chronic urticaria. Ann Allergy Asthma Immunol 2016: 116, 344-348.

Zappia CD, et al. Effects of histamine H1 receptor signaling on glucocorticoid receptor activity. Role of canonical and non-canonical pathways. Scientific Reports 2015: 5.

Coutinho AE, Chapman KE. The anti-inflammatory and immunosuppressive effects of glucocorticoids, recent developments and mechanistic insights. Mol Cell Endocrinol 2011: 335(1), 2-13.

Sinniah A, et al. The role of the Annexin-A1/FPR2 system in the regulation of mast cell degranulation provoked by compound 48/80 and in the inhibitory action of nedocromil. International Immunopharmacology 2016: 32, 87-95.

Kounis Syndrome: Subtypes and effects of mast cell mediators (Part 1 of 4)

Kounis Syndrome (KS) is an acute coronary syndrome that arises as a direct result of mast cell degranulation during an allergic or anaphylactic reaction.

KS usually presents as chest pain during an acute allergic or anaphylactic reaction. There are three recognized variants:

Type I: Patient has no predisposing coronary artery disease.

There are two possible outcomes:

  • Coronary artery spasm with no appreciable increase in cardiac enzymes or troponins
  • Coronary artery spasm that evolves to acute myocardiac infarction (heart attack) with accompanying increase in cardiac enzymes or troponins

Type II: Patient has history of coronary artery disease. There are two possible outcomes:

  • Coronary artery spasm with no appreciable increase in cardiac enzymes or troponins
  • Plaque erosion or rupture that evolves to acute myocardiac infarction (heart attack) with accompanying increase in cardiac enzymes or troponins

Type III: Patient has history of coronary artery disease and a drug eluting coronary stent. There are two possible outcomes:

  • Coronary artery spasm with no appreciable increase in cardiac enzymes or troponins
  • Thrombosis that evolves to acute myocardiac infarction (heart attack) with accompanying increase in cardiac enzymes or troponins

A number of mast cell mediators have effects that can cause coronary spasm or thrombosis.  Beyond their direct effects, they also perpetuate an inflammatory cycle that results in activation and infiltration by inflammatory cells

Mediator Effect
Histamine Coronary vasoconstriction, activation of platelets, increase expression of tissue factor
Chymase Activation of interstitial collagenase, gelatinase, stromelysin resulting in plaque rupture, generation of angiotensin II, a powerful vasoconstrictor
Cathepsin D Generation of angiotensin II, a powerful vasoconstrictor
Leukotrienes (LTC4, LTD4, LTE4) Powerful vasoconstrictor, levels increased during acute unstable angina
Tryptase Activation of interstitial collagenase, gelatinase, stromelysin resulting in plaque rupture
Thromboxane Platelet aggregation, vasoconstriction
PAF Vasoconstriction, aggregation of platelets
Platelets Vasoconstriction, thrombosis

 

References:

Kounis Syndrome (allergic angina and allergic myocardial infarction). Kounis NG, et al. In: Angina Pectoris: Etiology, Pathogenesis and Treatment 2008.

Lippi G, et al. Cardiac troponin I is increased in patients admitted to the emergency department with severe allergic reactions. A case-control study. International Journal of Cardiology 2015, 194: 68-69.

Kounis NG, et al. The heart and coronary arteries as primary target in severe allergic reactions: Cardiac troponins and the Kounis hypersensitivity-associated acute coronary syndrome. International Journal of Cardiology 2015, 198: 83-84.

Fassio F, et al. Kounis syndrome: a concise review with focus on management. European Journal of Internal Medicine 2016; 30:7-10.

Kounis Syndrome: Aspects on pathophysiology and management. European Journal of Internal Medicine 2016.

Symptoms, mediators and mechanisms: A general review (Part 1 of 2)

Skin symptoms    
Symptom Mediators Mechanism
Flushing Histamine (H1), PGD2 Increased vasodilation and permeability of blood vessels

Blood is closer to the skin and redness is seen

Itching Histamine (H1), leukotrienes LTC4, LTD4, LTE4, PAF Possibly stimulation of itch receptors or interaction with local neurotransmitters
Urticaria Histamine (H1), PAF, heparin, bradykinin Increased vasodilation and permeability of blood vessels and lymphatic vessels

Fluid is trapped inappropriately between layers of skin

Angioedema Histamine (H1), heparin, bradykinin, PAF Increased vasodilation and permeability of blood vessels and lymphatic vessels

Fluid is trapped inappropriately between layers of tissue

 

Respiratory symptoms    
Symptom Mediators Mechanism
Nasal congestion Histamine (H1), histamine (H2), leukotrienes LTC4, LTD4, LTE4 Increased mucus production

Smooth muscle constriction

Sneezing Histamine (H1), histamine (H2), leukotrienes LTC4, LTD4, LTE4 Increased mucus production

Smooth muscle constriction

Airway constriction/ difficulty breathing Histamine (H1), leukotrienes LTC4, LTD4, LTE4, PAF Increased mucus production

Smooth muscle constriction

 

Cardiovascular symptoms    
Symptom Mediators Mechanism
Low blood pressure Histamine (H1), PAF,  PGD2, bradykinin Decreased force of heart contraction

Increased vasodilation and permeability of blood vessels

Impact on norepinephrine signaling

Change in heart rate

Presyncope/syncope (fainting) Histamine (H1), histamine (H3), PAF, bradykinin Increased vasodilation and permeability of blood vessels

Decrease in blood pressure

Dysfunctional release of neurotransmitters

High blood pressure Chymase,  9a,11b-PGF2, renin, thromboxane A, carboxypeptidase A Impact on renin-angiotensin pathway

Impact on norepinephrine signaling

Tightening and decreased permeability of blood vessels

Tachycardia Histamine (H2), PGD2 Increasing heart rate

Increasing force of heart contraction

Impact on norepinephrine signaling

Arrhythmias Chymase, PAF, renin Impact on renin-angiotensin pathway

Impact on norepinephrine signaling

 

Gastrointestinal symptoms    
Symptom Mediators Mechanism
Diarrhea Histamine (H1), histamine (H2), bradykinin, serotonin Smooth muscle constriction

Increased gastric acid secretion

Dysfunctional release of neurotransmitters

Gas Histamine (H1), histamine (H2), bradykinin Smooth muscle constriction

Increased gastric acid secretion

Abdominal pain Histamine (H1), histamine (H2), bradykinin, serotonin Smooth muscle constriction

Increased gastric acid secretion

Dysfunctional release of neurotransmitters

Nausea/vomiting Histamine (H3), serotonin Dysfunctional release of neurotransmitters
Constipation Histamine (H2), histamine (H3), serotonin (low) Dysfunctional release of neurotransmitters

 

Cardiovascular manifestations of mast cell disease: Part 3 of 5

Recurrent or perpetual elevation in blood pressure has been observed in multiple studies and may affect up to 31% of patients with mast cell activation disease (systemic mastocytosis, mast cell activation syndrome/disorder, monoclonal mast cell activation syndrome). Despite this high prevalence, many providers continue to believe that this symptom cannot be inherently from mast cell activation.

A number of mast cell mediators are vasoconstrictors, narrowing the blood vessels and elevating blood pressure. Histamine can both increase and lower blood pressure depending on which receptor it acts upon (H1: hypotension; H2: hypertension).

Several mediators participate in the angiotensin-renin pathway. Angiotensin II, the level of which is largely determined by mast cell mediators like renin, strongly elevates blood pressure. Chymase, involved in the angiotensin-renin pathway, can also either increase or lower blood pressure depending on concentration relative to other mediators present. Carboxypeptidase A can also affect angiotensin II level as well. Renin regulates the level of a molecule that becomes angiotensin II and can increase blood pressure this way.

Phospholipases, which help produce the molecule needed to make prostaglandins, leukotrienes and thromboxanes can contribute to either high or low blood pressure depending upon which molecule is made. Prostaglandin D2 (PGD2) is a vasodilator, lowering blood pressure; but its metabolite, 9a,11b-PGF2, increases blood pressure. (Author’s note: I personally believe this to be the reason for the rapid blood pressure fluctuations in mast cell patients, but do not have evidence to directly support this.) Thromboxane A2, a molecule related to prostaglandins and leukotrienes, increases blood pressure, as do leukotrienes.

Management of high blood pressure is complicated in mast cell patients by the interaction of common antihypertensives with mast cell activation. Beta blockers are contraindicated in mast cell patients because they interfere with epinephrine, both naturally produced and medicinally.  Use of beta blockers is a risk factor for fatal anaphylaxis.  Any patient on beta blockers that carries an epipen should also carry a glucagon pen, which can be administered prior to the epipen to increase efficacy.

ACE inhibitors interfere with angiotensin converting enzyme, which increases blood pressure through the angiotensin II pathway.  ACE inhibitors affect bradykinin levels, a mast cell mediator that is also mast cell activating.  For this reason, ACE inhibitors can increase mast cell reactivity and symptoms like angioedema.

Author’s note:  I extended this series to four posts to discuss heart failure in mast cell patients.  Following this series, I will be posting a series dedicated exclusively to Kounis Syndrome, including diagnosis and treatment.  Sit tight!

References:

Kolck UW, et al. Cardiovascular symptoms in patients with systemic mast cell activation disease. Translation Research 2016; x:1-10.

Gonzalez-de-Olano D, et al. Mast cell-related disorders presenting with Kounis Syndrome. International Journal of Cardiology 2012: 161(1): 56-58.

Kennedy S, et al. Mast cells and vascular diseases. Pharmacology & Therapeutics 2013; 138: 53-65.

 

Master table of de novo mast cell mediators

 

Mediator Symptoms Pathophysiology
b-FGF (basic fibroblast growth factor) Angiogenesis, proliferation, wound healing, binds heparin
GM-CSF (granulocyte macrophage colony stimulating factor) Rheumatoid arthritis Induces stem cells to make granulocytes and monocycles
IL-1a Fever, insulin resistance, inflammatory pain Activates TNFa, stimulates production of PGE2, nitric oxide, IL-8 and other chemokines
IL-1b Pain, hypersensitivity Autoinflammatory syndromes, regulates cell proliferation, differentiation and death, induces COX2 activity to produce inflammatory molecules
IL-2 Itchiness, psoriasis Regulates T cell differentiation
IL-3 Drives differentiation of several cell types, including mast cells, and proliferation
IL-4 Airway inflammation, allergic asthma Regulates T cell differentiation
IL-5 Eosinophilic allergic disease Activates eosinophils, stimulates proliferation of B cells and antibody secretion, heavily involved in eosinophilic allergic disease
IL-6 Fever, acute phase inflammation, osteoporosis Inhibits TNFa and IL-1, stimulates bone resorption, reduces inflammation in muscle during exercise
IL-9 Asthma, bronchial hypersensitivity Increases cell proliferation and impedes apoptosis of hematopoietic cells
IL-10 Regulates the JAK-STAT pathway, interferes with production of interferons and TNFa.   Exercise increases levels of IL-10
IL-13 Airway disease, goblet cell metaplasia, oversecretion of mucus Induces IgE release from B cells, links allergic inflammation to non-immune cells
IL-16 Allergic asthma, rheumatoid arthritis, Crohn’s disease Attracts activated T cells to inflamed spaces,
IL-18 Linked to several autoimmune and inflammatory conditions, including Hashimoto’s thyroiditis Induces release of interferon-g, causes severe inflammatory reactions
Interferon-a Flu like symptoms, malaise, muscle soreness, fever, sore throat, nausea Inhibition of mast cell growth and activity
Interferon-b Flu like symptoms, malaise, muscle soreness, fever, sore throat, nausea Inhibition of mast cell growth and activity
Interferon-g Granuloma formation, chronic asthma Induces production of nitric oxide, IgG2a and IgG3 from B cells, increases production of histamine, airway reactivity and inflammation
Leukotriene B4 Mucus secretion, bronchoconstriction, vascular instability, pain Draws white cells to site of inflammation
Leukotriene C4 Mucus secretion, bronchoconstriction, vascular instability, pain Draws white cells to site of inflammation
MCP-1 Neuroinflammation, diseases of neuronal degeneration, glomerulonephritis Draws white blood cells to inflamed spaces,
MIF (macrophage migration inhibitory factor) Regulate acute immune response, release triggered by steroids
MIP-1a (macrophage inflammatory protein) Fibrosis Activates granulocytes, nduces release of IL-1, IL-6 and TNFa
Neurotrophin-3 Nerve growth factor
NGF (nerve growth factor) Regulates survival and growth of nerve cells, suppresses inflammation
Nitric oxide Bruising, hematoma formation, excessive bleeding Vasodilation, inhibition of platelet aggregation
PDGF (platelet derived growth factor) Platelet growth factor, growth of blood vessels, wound healing
Platelet activating factor Constriction of airway; urticaria; pain Platelet activation and aggregation, vasodilation
Prostaglandin D2 Flushing, mucus secretion, bronchoconstriction, vascular instability, mixed organic brain syndrome, nausea, abdominal pain, neuropsych symptoms, nerve pain Inflammation, pain, bronchoconstriction
Prostaglandin E2 Muscle contractions, cough Draws white blood cells to site of inflammation
RANTES (CCL5) Osteoarthritis Attracts white cells to inflamed spaces, causes proliferation of some white cells
SCF (stem cell factor) Regulates mast cell life cycle, induces histamine release
TGFb (transforming growth factor beta) Bronchial asthma, heart disease, lung fibrosis, telangiectasia, Marfan syndrome, vascular Ehlers syndrome syndrome Regulates vascular and connective tissues
TNFa (tumor necrosis factor) Fever, weight loss, fatigue Regulates death of cells and acute inflammation
VEGF (vascular endothelial growth factor) Bronchial asthma, diabetes Angiogenesis, draws white cells to inflamed spaces, vasodilation

 

 

Master table of stored mast cell mediators

Mediator Symptoms Pathophysiology
Angiogenin Tissue damage Formation of new blood vessels, degradation of basement membrane and local matrix
Arylsulfatases Breaks down molecules to produce building blocks for nerve and muscle cells
Bradykinin Angioedema, swelling of airway, swelling of GI tract, inflammation, pain, hypotension Vasodilation, induces release of nitric oxide and prostacyclin
Carboxypeptidase A Muscle damage Tissue remodeling
Cathepsin G Pain, muscle damage Converts angiotensin I to II, activates TGF-b, muscle damage, pain, fibrosis, activates platelets, vasodilation
Chondroitin sulfate Cartilage synthesis
Chymase Cardiac arrhythmia, hypertension, myocardial infarction Tissue remodeling, conversion of angiotensin I to II, cleaves lipoproteins, activates TGF-b, tissue damage, pain, fibrosis
Corticotropin-releasing hormone Dysregulation has wide reaching and severe effects Stimulates secretion of ACTH to form cortisol and steroids
Endorphins Numbness Pain relief
Endothelin Hypertension, cardiac hypertrophy, type II diabetes, Hirschsprung disease Vasoconstriction
Eotaxin (CCL11) Cognitive deficits Attracts eosinophils, decreases nerve growth
Heparin Hematoma formation, bruising, prolonged bleeding post-biopsy, gum bleeding, epistaxis, GI bleed, conjunctival bleeding, bleeding ulcers Cofactor for nerve growth factor, anticoagulant, prevents platelet aggregation, angiogenesis
Histamine Headache, hypotension, pruritis, urticaria, angioedema, diarrhea, anaphylaxis Vasodilation of vessels, vasoconstriction of atherosclerotic coronary arteries, action of endothelium, formation of new blood vessels cell proliferation, pain
Hyaluronic acid Degradation contributes to skin damage Tissue repair, cartilage synthesis, activation of white blood cells
IL-8 (CXCL8) Mast cell degranulation Attracts white blood cells (mostly neutrophils) to site of infection, activates mast cells, promotes degranulation
Kininogenases Angioedema, pain, low blood pressure Synthesis of bradykinin
Leptin Obesity Regulates food intake
Matrix metalloproteinases Irregular menses (MMP-2) Tissue damage, modification of cytokines and chemokines (modifies molecules to make them useful)
MCP-1 (CCL2) Nerve pain Attracts white blood cells to site of injury or infection, neuroinflammation, infiltration of monocytes (seen in some autoimmune diseases)
MCP-3 (CCL7) Increases activity of white blood cells in inflamed spaces
MCP-4 (CCL13) Shortness of breath, tightness of airway, cough Attracts white blood cells to inflamed spaces, induces mast cell release of TNFa and IL-1, asthma symptoms
Phospholipase A2 Vascular inflammation, acute coronary syndrome Generates precursor molecule for prostaglandins and leukotrienes
RANTES (CCL5) Osteoarthritis Attracts white cells to inflamed spaces, causes proliferation of some white cells
Renin Cardiac arrhythmias, myocardial infarction, blood pressure abnormalities Angiotensin synthesis, controls volume of blood plasma,lymph and interstitial fluid, regulates blood pressure
Serotonin/5-HT Nausea, vomiting, diarrhea, headache, GI pain Vasoconstriction, pain
Somatostatin Low stomach acid symptoms, low blood sugar Regulates endocrine system, cell growth and nerve signals, inhibits release of glucagon and insulin, decreases release of gastrin, secretin and histamine
Substance P Neurologic pain, inflammation, nausea, vomiting, mood disorders, anxiety Transmits sensory nerve signals, including pain, mood disorders, stress perception, nerve growth and respiration
Tissue plasminogen activator Blood clots Activates plasminogen, clotting
Tryptase Hematoma formation, bruising, prolonged bleeding post-biopsy, gum bleeding, epistaxis, GI bleed, conjunctival bleeding, bleeding ulcers; inflammation Activation of endothelium, triggers smooth muscle proliferation, activates degradation of fibrinogen, activates MMP molecules,tissue damage, activation of PAR, inflammation, pain
Urocortin Increased appetite when stressed, inflammation, low blood pressure Vasodilation, increases coronary blood flow
Vasoactive intestinal peptide Decreased absorption, low blood pressure, low stomach acid symptoms Vasodilation, mast cell activation, lowers blood pressure, relaxes muscles of trachea, stomach and gall bladder, inhibits gastric acid secretion, inhibits absorption
VEGF Diseases of blood vessels Formation of new blood vessels, vasodilation and permeability of smaller vessels

Exercise and mast cell activity

Research on exercise induced bronchoconstriction represents a large body of work through which we can draw conclusions about mast cell behavior as affected by exercise.

Exercise has been found in a number of studies to induce mast cell degranulation and release of de novo (newly made) mediators. One study found that levels of histamine, tryptase and leukotrienes were increased following exercise in sputum of people with exercise induced bronchoconstriction. This same study found that in these patients, prostaglandin E2 and thromboxane B2 was decreased in sputum. Treating with montelukast and loratadine suppressed release of leukotrienes and histamine during exercise.

One important area of research is the interface between being asthmatic and being obese. Adipose tissue is known to release inflammatory molecules called adipokines. In particular, the adipokine leptin has been studied for its role in bronchoconstriction following exercise. Leptin (I did a previous post on leptin, which is also called the obesity hormone) enhances airway reactivity, airway inflammation and allergic response. It can also enhance leukotriene production. This last fact is interesting because obese asthmatics are less likely to respond to inhaled corticosteroids when compared to lean asthmatics, but both respond similarly to anti-leukotriene medications like montelukast.

LTE4 was found to be significantly higher in the urine of both obese and lean asthmatics following exercise. It was not increased in either obese non-asthmatics or healthy controls. Additionally, the level of LTE4 was significantly higher in obese asthmatics compared to lean asthmatics. In this same study, urinary 9a, 11b-PGF2 was elevated in both lean and obese asthmatics, but not in obese or healthy controls. The 9a, 11b-PGF2 level was also higher in obese asthmatics than lean asthmatics. The elevated LTE4 and 9a, 11b-PGF2 were found in urine testing rather than in sputum, indicating that these chemicals did not stay local to the lungs and airway.

It is thought that the high levels of leptin found in asthmatics drive the manufacture and release of leukotrienes and prostaglandins from mast cells, epithelial cells or eosinophils during exercise. Though the data are stacking up to look like this is the case, there has not yet been a definitive causal link established.

 

References:

Teal S. Hallstrand, Mark W. Moody, Mark M. Wurfel, Lawrence B. Schwartz, William R. Henderson, Jr., and Moira L. Aitken. Inflammatory Basis of Exercise-induced Bronchoconstriction. American Journal of Respiratory and Critical Care Medicine, Vol. 172, No. 6 (2005), pp. 679-686.

Hey-Sung Baek, et al. Leptin and urinary leukotriene E4 and 9α,11β-prostaglandin F2 release after exercise challenge. Volume 111, Issue 2, August 2013, Pages 112–117

 

Prostaglandins and leukotrienes

Prostaglandins are molecules that behave like hormones and are used for signaling between cells. They are produced by many cell types and tissues in the body.

To make prostaglandins, an enzyme called phospholipase A2 turns diacylglycerol into arachidonic acid (AA). All prostaglandins are derived from AA and this molecule is mentioned often in scientific literature about mast cells, as it is easier to detect AA than some prostaglandins. Once AA has been produced, one of two things happen: AA is either changed by the cyclooxygenase (COX) pathway into prostaglandins and thromboxanes or by the lipoxygenase (LO) pathway into leukotrienes.

Prostaglandins, thromboxanes and leukotrienes are all types of eicosanoids. Eicosanoid is another common word in mast cell literature, and in that context it usually refers to prostaglandins or leukotrienes.

To make prostaglandins from AA, cells use the enzymes COX-1 and COX-2. COX-1 produces regular low levels of prostaglandins, whereas COX-2 makes prostaglandins in response to inflammation. Other enzymes called prostaglandin synthases finish off making the prostaglandins into the right shapes. To make leukotrienes from AA, cells use the enzyme arachidonate 5-lipoxygenase.

There are a number of medications that interfere with the production of leukotrienes or prostaglandins by interfering with the enzymes that make them. This is generally regarded as a more effective way to treat symptoms from these products, rather than trying to block their action after they have been made.

Non steroidal anti-inflammatories (NSAIDs), of which there are dozens, interfere with the activity of both COX-1 and COX-2. Newer COX-2 inhibitors like Celebrex only inhibit COX-2. Vitamin D downregulates expression of COX-2. A chemical in St. John’s Wort is also a COX-1 inhibitor. Zileuton is a lipoxygenase inhibitor.