Skip to content

systemic mastocytosis

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 34

41. Can my mast cell disease go away? Will it ever not be a problem?

There are several common questions that basically all distill down to these sentiments. I’m going to answer them all here.

I have previously answered the question “Can mast cell disease be cured?” in this series but I think this question is a little different. When people ask if mast cell disease can go away, they mean can it become no longer a problem even if it’s not cured. That’s what I’m answering here.

This answer is very complicated so I’m just going to give my thoughts let’s about all sides of this situation.

Yes, it is possible for mast cell disease to be controlled enough to no longer be a problem in your life. But there are a lot of caveats.

The most common presentation of mast cell disease in cutaneous mastocytosis (mastocytosis in the skin) in children. In about 2/3 of cases, children “grow out of” their mast cell disease. Specifically, this means that they lose their skin lesions and have no obvious mast cell symptoms by their late teenage/early adult years. We don’t know why this happens.

However, there are instances where a person who grew out of their childhood CM have mast cell issues later in life. We have a greater understanding of mast cell diseases now and we know that you can have a whole host of mast cell issues without having skin lesions. So it’s not as clean cut as was previously thought.

For more serious forms of systemic mastocytosis, it is possible that with treatment, the disease can be “knocked down” to a less serious category. For example, a patient with aggressive systemic mastocytosis who does chemo may find that it helped enough that their diagnosis is now smoldering systemic mastocytosis. Or a patient with SSM has a big drop in the number of mast cells zooming around after taking interferon and now they have indolent systemic mastocytosis. While symptom severity doesn’t necessarily change when a patient has a less serious diagnosis, that does sometimes happen.

With the exception of childhood cutaneous mastocytosis, all other forms of mastocytosis are considered lifelong ventures. This includes all forms of adult onset cutaneous mastocytosis and all forms of systemic mastocytosis for children or adults. However, there are instances of patients with SM where bone marrow transplant seems to cure their disease. We need to continue to follow mast cell patients who have had bone marrow transplants to see how many of them have recurrence of mast cell disease.

Mast cell activation syndrome is often secondary to some other condition. Basically, one disease irritates your body so much that your mast cells flip out in response to the disease. The disease that caused the mast cell problem is called the primary condition. In these instances, mast cell activation syndrome is sometimes considered to be dependent upon the primary condition. This means that some doctors and researchers feel that if you control the primary condition, the mast cell activation syndrome will go away.

This sentiment seems straightforward but is actually pretty complex. Let’s pull it apart. Let’s say your primary condition is lupus. You are a patient with lupus. The lupus irritates your body so much that your mast cells just go bananas. Now you are a patient with lupus who has secondary MCAS. The lupus in this instance caused the MCAS. But what does that mean? Does that mean that without the lupus, you would never have had MCAS? Or does it mean that you would eventually have had MCAS secondary to something else? This is the topic of a lot of debate. (I personally am of the belief that MCAS is genetic and therefore you were always going to develop it at some point.) So it’s not clear yet whether a primary condition really “causes” MCAS or just wakes it up.

However, what is not disputed at all is that any type of inflammation can trigger mast cell activation and symptoms. So if you are a lupus patient, and your lupus is going crazy, that’s going to really bug your mast cells. If you are able to control your lupus, it will decrease the inflammation, which will calm your mast cells. But calming your mast cells isn’t really the same thing as your mast cell disease going away. Not having symptoms is not the same thing as being cured.

Another thing to consider is that even if the lupus is what triggered your MCAS, once your MCAS is triggered, it’s going to be triggered by everything. You can very easy get locked into a cycle where the lupus irritates your MCAS, which irritates your lupus, and around you go. So in a situation like this, where the mast cell activation is really out of control, it sometimes doesn’t matter what the primary condition is, and controlling the primary condition might not help.

Many patients with mast cell disease have their symptoms controlled enough to live pretty normal lives. Some mast cell patients don’t have really symptoms at all, even without medications. In a small group of MCAS patients, after a year of treatment with antihistamines and mast cell stabilizers, about 1/3 had complete resolution of symptoms and another 1/3 had one only symptom that was a problem. 

However, it’s important to remember that this is not having debilitating symptoms is not the same as not having mast cell disease. These patients are still predisposed towards mast cell activation and should take mast cell precautions for things like surgery or dental work. Many patients stay on antihistamines and/or a mast cell stabilizer even with good symptom control because it affords some protection from bad reactions and anaphylaxis. Patients should only stop regular medication with the supervision and direction of a provider who knows them. Additionally, trialing things like foods you reacted to, or starting an exercise program, require provider input.

You should also keep in mind that mast cell disease can be very erratic. It doesn’t always follow a trend so symptoms steadily improving does not guarantee that symptoms will stay well controlled. So while mast cell disease can be managed enough to not be a problem, there is always the possibility that it will show up again. Once you have a mast cell diagnosis, you are always going to be looking over your shoulder.

 

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 33

40. What is mastocytosis of childhood? Is mast cell disease different for children than adults?

Cutaneous mastocytosis in children is the most common form of mastocytosis. True systemic mastocytosis, in which the WHO criteria are met, is very rare in children.

In many ways, mastocytosis in children has huge differences from mastocytosis in adults. The exact reason for this is unclear. Because of how different the disease path can be for children, doctors and researchers sometimes refer it as mastocytosis of childhood. However, there is not officially a distinct diagnostic category.

Unlike in adults, mastocytosis in children is sometimes both benign and transient. Many kids have symptoms that either stay the same or improve as they get older. Many kids grow out of their mastocytosis. About 2/3 of children with cutaneous mastocytosis have no evidence of disease (no skin lesions or symptoms) by their late teen years or early adulthood. Many other children have improvement of symptoms and signs without completing growing out of their condition.

Children with mastocytosis often have some unusual things in their bone marrow biopsies. They often have clusters of mast cells and eosinophils with other cells in their bone marrow. However, the mast cells in those clusters are often normal mast cells and do not have the same markers we see in adults. Many of these children have more mast cells in their bone marrow biopsies than adults with mastocytosis. However, unless the biopsy shows true SM, it does not affect prognosis for the children. Children may have unusual things in their bone marrow biopsies but still go on to grow out of it.

The exception is if the child has true SM. Children with true SM do not grow out of their disease.

Children with mastocytosis often have symptoms that affect multiple organ systems, not just their skin. Abdominal pain and bone pain are often reported. Systemic symptoms do not tell us whether or not the child has SM or whether or not they will grow out of their disease.

An NIH study that included 105 children with mastocytosis found that children with normal baseline tryptase tests had negative bone marrow biopsies. It also found that a tryptase level elevated after anaphylaxis or a bad reaction did not signify that the child had SM. However, they did find that all children with SM had internal organ swelling. Most children with SM were positive for the CKIT D816V mutation.

There are no studies yet on the differences between adults and children with MCAS. There are enough anecdotal findings to suggest that children with MCAS do not grow out of their disease the way children with CM sometimes do.

For more detailed reading, please visit these posts:

Childhood mastocytosis: Update

Progression of mast cell diseases (Part 5)

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 28

36. Is MCAS less serious than SM?

No.

There is a lot of literature presenting data on SM. There is a lot less on MCAS. This is largely because of how recently it has described and the fact that different sets of criteria make it impossible to do large scale studies as have been done with SM. So it’s hard to objectively compare the data because the same volume just doesn’t exist yet.

Many providers and researchers think of MCAS as a form of “preclinical SM”. This term was tossed around in the early 2000s by SM researchers who found patients that seemed to have SM but didn’t meet the criteria for it. There were a few presentations in which an image was shown of a line with the different types of SM shown.

From left to right, the line read:
Preclinical SM/Indolent SM/Smoldering SM/Aggressive SM/Mast cell leukemia

Based upon this figure, and the fact that we are trained to look at lines like this as continuum that either increases or decreases in order, many people latched onto “preclinical SM” (like MCAS) as being the least dangerous. Importantly, the figure refers to the increasing danger of permanent organ damage by mast cells ending up in organ tissues. It does NOT refer to the danger of anaphylaxis.

Indolent systemic mastocytosis (ISM) is the least dangerous form of SM and by far the most common. When people ask if MCAS is less dangerous than SM, they usually mean is MCAS less dangerous than ISM. A couple of small study groups have found that prevalence of anaphylaxis in MCAS is less frequent than in ISM. However, this comparison is flawed. Many people have known they have SM for 20+ years. MCAS hasn’t even been a viable diagnosis for 10 years. MCAS is also less likely to be diagnosed due to decreased exposure on the part of many providers. Many MCAS patients are diagnosed with idiopathic anaphylaxis instead so you’re not really looking at a robust population of MCAS patients in these studies.

ISM has a normal lifespan. It is treated the same way as MCAS and the two conditions have remarkably few differences beyond very specific markers that show the body making too many sloppy mast cells.

Some MCAS patients have protracted anaphylaxis and a normal baseline of very serious daily symptoms. It is my personal opinion that the anaphylaxis episodes I have observed in many MCAS patients can be a lot worse than you see in ISM. MCAS patients also have a harder time finding treatment. While ISM patients certainly run into unknowledgeable providers, it is my experience that having an ISM diagnosis is more helpful for facilitating treatment than an MCAS diagnosis.

We need time in order for larger studies and more unifying MCAS criteria to emerge but I am certain that these will follow. MCAS is at least as dangerous as ISM, if not more. Both MCAS and ISM are less dangerous than SSM, ASM and MCL.

For more detailed reading, please visit these posts:
The Provider Primer Series: Mast cell activation syndrome (MCAS)
The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 26

I answered the 107 questions I have been asked most in the last four years. No jargon. No terminology. Just answers.

34. What are the differences between the forms of systemic mastocytosis?

Indolent systemic mastocytosis

  • A form of SM in which the amount of mast cells produced in the bone marrow is excessive but not inherently dangerous to organ function.
  • Mast cells produced in the bone marrow are damaged.
  • These mast cells are released into the blood. While there are more mast cells than usual, there are not enough to overwhelm the blood.
  • There are fewer mast cells than in mast cell leukemia. There are often fewer mast cells than aggressive systemic mastocytosis or smoldering systemic mastocytosis.
  • The mast cells leave the blood and may enter organs inappropriately. Some patients do not have signs of too many mast cells being in an organ other than bone marrow.
  • The presence of mast cells in organ tissue can cause symptoms and medical signs but is not inherently dangerous to organ function.
  • It is not unusual for ISM patients to have typical mast cell symptoms and complications like anaphylaxis.
  • The lifespan for ISM is normal.
  • In indolent systemic mastocytosis, patients die from progressing to a more aggressive form of SM, such as MCL, ASM or SM-AHD.
  • Fatal anaphylaxis is always a risk with mast cell disease.

Smoldering systemic mastocytosis

  • A form of SM in which the amount of mast cells produced in the bone marrow is increasing to the point at which it might cause organ damage.
  • Mast cells produced in the bone marrow are damaged.
  • These mast cells are released into the blood. There are fewer mast cells than in mast cell leukemia. There are often fewer mast cells than aggressive systemic mastocytosis.
  • Mast cells leave the blood and enter organs in larger numbers than is normal. The presence of mast cells in these organs can cause symptoms and medical signs, like swelling of the liver.
  • Organ dysfunction can sometimes be corrected with surgery or certain medications.
  • It is not unusual for SSM patients to have typical mast cell symptoms and complications like anaphylaxis.
  • The lifespan for SSM is widely variable. One well known paper published survival of around ten years. However, many of the patients in this study were over 60 and age may have affected the average survival found in this group.
  • Patients with smoldering systemic mastocytosis are monitored to look for signs of significant organ dysfunction.
  • People with this diagnosis are considered to be possibly transitioning to a more serious form of systemic mastocytosis.
  • Smoldering systemic mastocytosis is the diagnosis that occurs between aggressive systemic mastocytosis and indolent systemic mastocytosis. It is thought of as the stage crossed when a patient with indolent systemic mastocytosis progresses to having aggressive systemic mastocytosis or mast cell leukemia.
  • In smoldering systemic mastocytosis, patients die from progressing to a more aggressive form of SM, such as MCL, ASM or SM-AHD.
  • Fatal anaphylaxis is always a risk with mast cell disease.

Aggressive systemic mastocytosis

  • A dangerous form of SM in which your bone marrow makes way too many damaged mast cells.
  • These mast cells are released into the blood. There are fewer mast cells than in the blood than in mast cell leukemia.
  • The mast cells leave the blood and go into various organs.
  • The presence and activation of the mast cells in the organs can affect organ function.
  • Over time, the presence and activation of mast cells in the organs can cause organ failure. This can sometimes be corrected with surgery or certain medications.
  • Typical mast cell mediator symptoms and complications like anaphylaxis are less common than in less serious types of SM.
  • The lifespan for ASM is much shorter than normal but is dependent upon response to treatment and which organs are involved. Older papers reference an average of 41 month survival but this has changed with more recent treatment options.
  • Generally, people with ASM live longer than those with MCL.
  • In aggressive systemic mastocytosis, patients die from the organ damage that has accrued over time by the presence and activation of mast cells in places they don’t belong.
  • Fatal anaphylaxis is always a risk with mast cell disease.

Mast cell leukemia

  • A very dangerous form of SM in which your bone marrow makes massive amounts of damaged mast cells.
  • These mast cells are released into the blood in overwhelming numbers.
  • The mast cells leave the blood and end up in various organs.
  • Specifically because of how many mast cells are present, mast cells invading the organs break up the organ tissue and cause severe organ damage.
  • The organ damage leads to organ failure, which leads to death.
  • Typical mast cell mediator symptoms and complications like anaphylaxis are less common than in less serious types of SM.
  • The lifespan for MCL is much shorter than normal.
  • Lifespan for MCL is usually quoted as being in the range of 6-18 months. However, there are more recent reports of some patients living 4+ years.
  • In mast cell leukemia, patients die from the organ damage caused by large amounts of mast cells entering and breaking up organ tissue.
  • Fatal anaphylaxis is always a risk with mast cell disease.
  • Of note, there is a newly described chronic form of mast cell leukemia. In this form, patients have stable mast cell disease despite having an overwhelming amount of mast cells in their bodies. The reason for this is unclear and long term survival is not yet known.

Systemic mastocytosis with associated hematologic disease

  • A form of SM in which the patient also has a separate blood disorder that produces too many cells of a different kind.
  • A patient with systemic mastocytosis with associated hematologic disease has too many mast cells and too many blood cells of a different kind. 
  • Previously called SM-AHNMD, systemic mastocytosis with associated clonal hematologic non mast cell lineage disease.
  • The two blood disorders, SM and the other disorder, are treated separately the same way they would be if the patient only had one or the other.
  • The lifespan for SM-AHD is wildly variable as it depends both on which type of SM the patient has as well as the type and severity of the other blood disorder.
  • An important thing to remember is if a patient has SM and another blood disorder that produces too many cells, they are classified as SM-AHD regardless of the type of SM they have. For example, if a patient who has ISM (normal lifespan) also has chronic myelogenous leukemia, they have SM-AHD. However, if the patient has ASM (shortened lifespan) and chronicle myelogenous leukemia, they still have SM-AHD even though the prognosis changes considerably.
  • In SM-AHD, patients die from having an aggressive form of SM, such as MCL or ASM, or as a result of their other blood disorder.
  • Fatal anaphylaxis is always a risk with mast cell disease.

For more detailed reading, please visit these posts:
The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)
The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (SM-AHD, MCL, MCS)

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 15

I have answered the 107 questions I have been asked most in the last four years. No jargon. No terminology. Just answers.
23. Is mast cell disease progressive?
No, mast cell disease is not inherently progressive. Many patients live their entire lives with the same diagnosis.
“Progressive” is not the same thing as “changing.” The way mast cell disease can change over time and often does.
• “Progressive” has a very specific meaning in this context. It means movement from one diagnostic category to another, essentially changing your diagnosis to a more serious form of mast cell disease.
We do not have studies yet on whether or not MCAS “becomes” SM. However, we know that many people live with MCAS for decades without evidence of SM.
• There are several subtypes of systemic mastocytosis. In order of increasing severity, they are: indolent systemic mastocytosis; smoldering systemic mastocytosis; systemic mastocytosis with associated hematologic disease; aggressive systemic mastocytosis; and mast cell leukemia.
• The relative danger of systemic mastocytosis with associated hematologic disease (SM-AHD) when compared with other forms of systemic mastocytosis varies wildly. SM-AHD is when you have SM and another blood disorder where your body makes way too many cells. The other blood disorder is an important factor in life expectancy and risk of organ damage so it is difficult to compare it to other forms of mastocytosis.
• For patients with indolent systemic mastocytosis, in the 5-10 years following diagnosis, about 1.7% of patients progressed to smoldering mastocytosis, aggressive systemic mastocytosis, or mast cell leukemia.
• For patients with indolent systemic mastocytosis, in the 20-25 years following diagnosis, about 8.4% of patients progressed to smoldering mastocytosis, aggressive systemic mastocytosis, or mast cell leukemia.
• For patients with indolent systemic mastocytosis, one study found that roughly 8% of patients progressed to smoldering systemic mastocytosis.
• For patients with indolent systemic mastocytosis, two studies found that roughly 3% and 4% of patients progressed to aggressive systemic mastocytosis.
• For patients with indolent systemic mastocytosis, about 0.6% of patients progressed to acute leukemia (mast cell leukemia or acute myelogenous leukemia)..
• For patients with smoldering systemic mastocytosis, about 18% of them progressed to aggressive systemic mastocytosis or mast cell leukemia.
• For patients with aggressive systemic mastocytosis, about 6.5% of them progressed to acute leukemia (mast cell leukemia or acute myelogenous leukemia).
• For patients with systemic mastocytosis with associated hematologic disease, about 13% of them progressed to acute leukemia (mast cell leukemia or acute myelogenous leukemia).

For more detailed reading, please visit these posts:

Progression of mast cell diseases: Part 2

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (SM-AHD, MCL, MCS)

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 14

I have answered the 107 questions I have been asked most in the last four years. No jargon. No terminology. Just answers.

22. Is MCAS an early form of SM?

MCAS is not viewed as an early form of SM but the diagnosis of MCAS may precede a later diagnosis of SM.
• In the last few years, we have learned a lot about the genetics associated with mast cell diseases and how it occurs in families. As a result, we are beginning to understand that mast cell diseases occur more along a spectrum than as distinct categories. This means that there is a lot of overlap between conditions.
• While it is certainly not a new disorder, MCAS is a pretty recent diagnostic entity. The last decade has seen a large increase in diagnosis as it has been more frequently described. Because of how new it is, and also the fact that there aren’t uniform criteria for what MCAS is, there will be a level of uncertainty about how this disease tends to progress for some time.
• That uncertainty aside, we know that at least some patients with a long history of MCAS have continued to have symptoms without developing markers of systemic mastocytosis.
• However, some patients with history of MCAS do develop markers of systemic mastocytosis.
• Many patients do not receive bone marrow biopsies when they are diagnosed with MCAS because there is not always a reason to have one. It often doesn’t affect treatment. If there is no sign of organ damage, the patient has a negative blood test for the CKIT D816V mutation, and their baseline tryptase is below 20 ng/mL, most doctors do not order a bone marrow biopsy. This means that some patients who are diagnosed with MCAS may have had SM all along but it wasn’t found until a biopsy was performed later.
• In 2007, monoclonal mast cell activation syndrome was described in scientific literature. This condition is diagnosed when a patient meets some criteria of systemic mastocytosis but not enough for a diagnosis of SM.
Monoclonal mast cell activation syndrome is more often viewed as a “pre-SM”. I personally view it this way. Before it had a name, researchers called it “pre-diagnostic SM.” Literally, SM before they could diagnose it as SM.

For more detailed reading, please visit these posts:

The Provider Primer Series: Mast cell activation syndrome (MCAS)

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (SM-AHD, MCL, MCS)

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, part 7

I have answered the 107 questions I have been asked most in the last four years. No jargon. No terminology. Just answers.

 

13. What do these biopsy tests look for?
• They look for the shape, quantity, and distribution of mast cells.
• They also look for specific proteins on the outside of mast cells and tissue damage around mast cells.
• Systemic mastocytosis and cutaneous mastocytosis are generally diagnosed by biopsy. With very, very few exceptions, you cannot meet the criteria for systemic mastocytosis without having a positive biopsy. Sometimes people with monoclonal mast cell activation syndrome are diagnosed by having a biopsy that looks like a very early phase of systemic mastocytosis.
• The diagnostic criteria for mast cell activation syndrome are hotly contested. Most doctors do not use biopsies to diagnose MCAS because there are not uniform criteria. Some doctors feel that more than 20 mast cells in a field when you look through the microscope is a sign of MCAS.
• Cutaneous mastocytosis is having too many broken mast cells in your skin. For this condition, they are looking for either 20 mast cells to be present in the microscope field (hpf) when looking at the skin, or for there to be at least one cluster of at least fifteen mast cells.
• Clustering is a very important feature of mastocytosis. When mast cells bunch together in a cluster, it is easier to damage the tissue. They are essentially punching holes in the tissue by clustering.
• Systemic mastocytosis is having too many broken mast cells made by the bone marrow. Systemic mastocytosis is usually diagnosed by a positive bone marrow biopsy. However, sometimes people are diagnosed by biopsies of other organs. Skin biopsy is NOT enough to diagnose systemic mastocytosis.
• For systemic mastocytosis, there are three key things they are looking for in the biopsy.
• They are looking for at least one cluster of at least fifteen mast cells.
• They are looking for some of the mast cells to be shaped like spindles, sort of smushed at the ends and round in the middle. You see this shape a lot when cells are trying to stick together in a cluster.
• They are looking for special proteins that are only found when a patient has systemic mastocytosis or monoclonal mast cell activation syndrome. They are called CD25 and CD2. These are like flags that the mast cells fly to tell us they are broken. One of them, CD25, actually helps mast cells cluster together.
• In biopsies, they usually also look for the protein CD117. This is a normal flag for mast cells to fly and just allows us to know that we are looking at mast cells.

For more detailed reading, please visit these posts:

The Provider Primer Series: Management of mast cell mediator symptoms and release

The Provider Primer Series: Mast cell activation syndrome (MCAS)

The Provider Primer Series: Cutaneous Mastocytosis/ Mastocytosis in the Skin

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (SM-AHD, MCL, MCS)

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 5

I have answered the 107 questions I have been asked most in the last four years. No jargon. No terminology. Just answers.

10. How is mast cell disease diagnosed?
• There are several tests you need to definitively determine if you have mast cell disease and what kind you have.
The most well known test for mast cell disease is serum tryptase. This is a blood test. This is the test doctors are most likely to have heard of. Doctors may think that you can’t have mast cell disease if tryptase is normal. This is not true.
• If a patient has a tryptase over 20 ng/mL, the next step is usually a bone marrow biopsy. A tryptase over 20 ng/mL increases the likelihood that a patient has systemic mastocytosis. SM is most commonly confirmed by a bone marrow biopsy.
• You need a special stain in order to see mast cells in any biopsy. Stains that show mast cells include Giemsa Wright stain and toluidine blue. Your doctor should specify these stains.
• Several tests must be run on the bone marrow biopsy to look for clonal mast cell disease. Remember that in clonal diseases, the body makes too many broken cells.
• The shape of the mast cells in the biopsy is very important. If the mast cells are not shaped right, this can be a sign of mast cell disease.
• The number of mast cells grouped together in the body is also important. If 15 or more mast cells are all stuck together, this is called a cluster. When mast cells are clustered together like this, they can punch holes in the tissue and damage it a lot. This prevents the tissue from working right.
• Immunohistochemistry (IHC) is a way to find specific proteins that allow us to know what cells we are looking at in the biopsy. Often, these proteins are on the outside of the cells. Think of these are flags that a cell can wave. IHC can look for the specific flags a cell is waving so that we know for sure which cell is which. For mast cell disease, they want to look for CD117, CD25, and CD2. The CD117 flag is flown normally by all mast cells. CD25 and CD2 are special flags flown by mast cells if you have clonal mast cell disease.
• PCR is a way to look for genetic mutations. They need to look for a mutation in the mast cells in the bone marrow. The mutation is found at a specific place in the CKIT gene. This mutation is found in 80-90% of patients with systemic mastocytosis. It may also be found if patients have monoclonal mast cell activation syndrome.
• If a patient does not have a tryptase over 20 ng/mL, a bone marrow biopsy is often not ordered. There are other tests that can indicate mast cell disease.
• Urine collected over 24 hours can be tested for specific chemicals. In the case of mast cell disease, they are looking for chemicals that can be high if you have mast cell disease. These chemicals have very long, complicated names. I will explain in a later post exactly what they are and what they do. The most common ones are called n-methylhistamine, prostaglandin D2, 9a,11b-prostaglandin F2, and leukotriene E4. Anti-heparin Xa and chromogranin A are sometimes tested. They are much less reliable as indicators of mast cell disease than the others mentioned here.
• If a patient is suspected to have cutaneous mastocytosis, a skin biopsy is needed to confirm. As with bone marrow biopsies, your doctor should specify that they need to use toluidine blue or Giemsa Wright stain to be sure they see the mast cells.
• The skin biopsy should also receive the other tests I described above for bone marrow biopsy: the counting of mast cells and looking at the shape; looking for CD117, CD2, and CD25; and looking for the same mutation with PCR.
11. What kind of doctor diagnoses mast cell disease? Can any doctor order these tests?
Doctors from all different specialties may diagnose and manage mast cell disease. It depends upon the individual provider and where you are located. It could be a dermatologist, allergist, hematologist, pulmonologist, gastroenterologist, or another specialist.
• The serum tryptase is the easier to order and the most well known test. Many labs can run this test.
• The 24 hour urine tests are specialized. Some of them are run in only a few places and samples are usually shipped there. Most often, these samples are run at the Mayo Clinic. Many outpatient labs have no way to run those tests. You will need to speak with your doctor about how to get these tests. It is often easiest if they are run by a hospital lab but again, this depends upon the hospital.
• The PCR genetic test for this specific gene is run in more places than the urine tests but is still not very common. Again, it is often easiest if they are run by a hospital lab.
• A bone marrow biopsy is usually ordered by a hematologist or by another specialist that works commonly with hematologists. They are usually performed by hematology providers. Some testing can usually be performed in house (the counting of the cells and looking at the shape) while others may need to be sent out (the IHC testing).
• A skin biopsy is usually ordered by a dermatologist. Some testing can usually be performed in house (the counting of the cells and looking at the shape) while others may need to be sent out (the IHC testing).
For more detailed reading, please visit these posts:

The Provider Primer Series: Management of mast cell mediator symptoms and release

The Provider Primer Series: Mast cell activation syndrome (MCAS)

The Provider Primer Series: Cutaneous Mastocytosis/ Mastocytosis in the Skin

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (SM-AHD, MCL, MCS)

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 2

I have answered the 107 questions I have been asked most in the last four years. No jargon. No terminology. Just answers.

3. What causes mast cell disease?

  • The cause of mast cell disease is not yet definitively known.
  • As mentioned yesterday, when the body makes too many copies of a broken cell, those cells are called ‘clonal’ cells. In clonal forms of mast cell disease, the bone marrow makes too many mast cells. Those mast cells also don’t work correctly. Examples of clonal mast cell diseases are systemic mastocytosis and cutaneous mastocytosis.
  • Patients with systemic mastocytosis often have a specific genetic mutation called the CKIT D816V mutation. About 80-90% of systemic mastocytosis patients have this mutation. This mutation is in mast cells and it tells the mast cells to stay alive WAY longer than they should. And mast cells already live for months or years, a very long time for cells to live in the body. So patients with this mutation can end up with way too many broken mast cells.
  • Despite the fact that we know that many patients have this mutation, we do not say that this mutation CAUSES the disease. The reason for this is that sometimes, mast cell patients don’t have the mutation when they get sick but they develop it later. Sometimes, mast cell patients have the mutation and then lose it later. So we are still looking for something that causes the disease.
  • Patients with non-clonal mast cell disease do not have a single major mutation like the CKIT D816V mutation. This makes it harder to diagnose. Researchers have found that many times, patients with MCAS DO have mutations similar to the ones systemic mastocytosis patients do. But the MCAS patients often have different mutations from each other. That’s why it’s not helpful yet for diagnosis.
  • Despite the fact that the mutations described here are not considered to be heritable, there is more and more evidence that mast cell disease can happen to many people in the same family. See the next question for more details.

4. Is mast cell disease heritable?

  • Mast cell disease often affects multiple members of the same family. Importantly, patients often have a different type of mast cell disease than their relatives. This implies that mast cell disease is more of a spectrum rather than several different diseases.
  • A survey found that 74% of mast cell patients interviewed reported at least one first degree relative that had mast cell disease. This same study found that 46% of those patients had mast cell disease that affected more than just their skin. This is called systemic disease.
  • The CKIT D816V mutation is the mutation most strongly associated with clonal mast cell disease. The CKIT D816V mutation is NOT heritable.
  • There are very rare instances of other heritable mutations in families that have mast cell disease. The significance of this is not clear.

5. Can mast cell disease be cured?

  • Generally speaking, there is no cure for mast cell disease.
  • Children who present with cutaneous mastocytosis sometimes grow out of their disease. Their lesions disappear. Their mast cell symptoms affecting the rest of the body may disappear. We do not know why this happens. It has been heavily researched with long term follow up of children with childhood mastocytosis (at least one paper followed them for 20 years).
  • Children with true systemic mastocytosis do not grow out of their disease.
  • There is not yet data on children with MCAS. Anecdotally, they do not seem to grow out of their disease like kids with cutaneous mastocytosis can. Importantly, this is just what it looks like to me. Again, there is no data.
  • People with adult onset mast cell disease have lifelong disease.
  • There is one notable exception to this scenario. There are reports of curing mast cell disease following hematopoietic stem cell transplant/bone marrow transplant.
  • Transplantation is EXTREMELY dangerous. The transplant is MUCH, MUCH more dangerous than mast cell disease. Many people do not survive the protocol necessary to prepare for transplant. Many die from complications, or from a disease they acquired after their transplant.
  • Rarely, people may have malignant forms of mast cell disease, aggressive systemic mastocytosis (ASM) or mast cell leukemia (MCL). A few patients with these diseases have tried transplants after everything else failed. While some did see improvement after transplant, no one has survived more than a few years.
  • Conversely, sometimes people with mast cell disease have these transplants for other reasons, like having another blood cancer or bone marrow disease that requires transplant. In this group of people, some see drastic improvement of their mast cell disease. Some see a full remission of mast cell disease. Some do not get any improvement. These findings are pretty recent so it’s hard to be more specific.

For more detailed reading, please visit these posts:

The Provider Primer Series: Introduction to Mast Cells

The Provider Primer Series: Mast cell activation syndrome (MCAS)

The Provider Primer Series: Cutaneous Mastocytosis/ Mastocytosis in the Skin

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (SM-AHD, MCL, MCS)

Mast cell disease in families

Heritable mutations in mastocytosis

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 1

I have answered the 107 questions I have been asked most in the last four years. No jargon. No terminology. Just answers.

  1. What are mast cells?
    • Mast cells are white blood cells that live in tissues. It is a little misleading that mast cells are white blood cells because they don’t live in the blood. Mast cells are born in the bone marrow, the squishy tissue inside bones where blood cells are made. From the bone marrow, they are sent to the blood stream. Mast cells use the bloodstream to carry them to their final destination so they do not stay in the blood for very long. Mast cells move out of the blood stream and into tissues throughout the body. Mast cells live for months or years, a long time for cells to live in the human body.
    • Mast cells do many things in the body. They are largely responsible for allergic reactions and anaphylaxis. They have many other jobs, like healing wounds, regulating reproductive activities (menstruation, pregnancy), and fighting infections from viruses, bacteria, fungi, and even intestinal parasites like worms. The original function of mast cells thousands of years ago was probably to fight off intestinal parasites. Mast cells are found in many tissues and are essential for correct functioning of the body.
    • Mast cells have many pouches inside of them called granules. These granules hold chemicals made by the mast cells. These chemicals help the mast cells to do their various jobs. They also help mast cells to communicate with other cells nearby or in other parts of the body. These chemicals can be released into the bloodstream to signal for other immune cells to come to the mast cell that released them.
  2. What is mast cell disease?
    • Mast cell diseases are rare diseases in which your body makes too many mast cells and/or mast cells do not function correctly. In the US, diseases that affect fewer than 200,000 people are called rare diseases.
    • Mast cell diseases are broadly classified into two groups: clonal and non-clonal (also called proliferative and non-proliferative).
    • When the body makes too many copies of a broken cell, those cells are called ‘clonal’ cells. In clonal forms of mast cell disease, the bone marrow makes too many mast cells. Those mast cells also don’t work correctly. They use too much energy on the wrong things. Because these mast cells are often busy making truble, they don’t have as much energy to do their normal necessary functions.
    • Clonal mast cell diseases include all forms of systemic mastocytosis (indolent, smoldering, aggressive, and mast cell leukemia); all forms of cutaneous mastocytosis (urticaria pigmentosa, of which telangiectasia macularis eruptiva perstans is a subtype, diffuse cutaneous mastocytosis); mastocytoma (usually found on the skin but also found elsewhere); mast cell sarcoma; and monoclonal mast cell activation syndrome. Importantly, in clonal mast cell diseases, the problem is not just that too many mast cells are made – those mast cells must also be dysfunctional for the disease to be clonal.
    • In non-clonal mast cell disease, the number of mast cells may be normal, but the cells are broken. Importantly, people with non-clonal mast cell disease may make more mast cells than normal, but not enough to be considered a clonal disease. In these diseases, even if the bone marrow makes the normal amount of mast cells, they still do not work correctly. They use too much energy on the wrong things. Because these mast cells are often working to inflame the body when it is not needed, they don’t have as much energy to do their normal necessary functions.
    • Non-clonal mast cell diseases include all other forms of mast cell disease: mast cell activation syndrome (secondary and idiopathic); familial hypertryptasemia; and mastocytic enterocolitis, which is recognized by some groups as its own disease, and by other groups as part of different mast cell diseases.
    • In these diseases, mast cells do not function properly. In all mast cell diseases, mast cells can get irritated easily. They respond to things in the environment and inside the body that they think are dangerous, even when those things are normal and safe for most people. This response is called mast cell activation.
    • Mast cell activation causes many symptoms. Many of these symptoms are “allergic” in nature. Some are not directly recognizable as “allergic”. Symptoms can affect every bodily system or may be localized to only one or two. It differs from person to person and can change over time within a person. You cannot know which mast cell disease a person has based upon their symptoms.

For more detailed reading, please visit these posts:

The Provider Primer Series: Introduction to Mast Cells

The Provider Primer Series: Mast cell activation syndrome (MCAS)

The Provider Primer Series: Cutaneous Mastocytosis/ Mastocytosis in the Skin

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (SM-AHD, MCL, MCS)