The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 3

I have answered the 107 questions I have been asked most in the last four years. No jargon. No terminology. Just answers.

6. What symptoms does mast cell disease cause?

  • Mast cell disease can cause just about any symptom. Seriously.
  • Mast cell disease can cause symptoms in every system of the body. This is because mast cells are found in tissues throughout the body. They are intimately involved in lots of normal functions of the human body. When mast cells are not working correctly, lots of normal functions are not carried out correctly. When this happens, it causes symptoms. In short, mast cells can cause symptoms anywhere in the body because they were there already to help your body work right.
  • Skin symptoms can include flushing, rashes, hives (urticaria), itching, blistering, and swelling under the skin (angioedema).
  • GI symptoms include nausea, vomiting, diarrhea, constipation, problems with the GI not moving correctly in general (GI dysmotility), swelling of the GI tract, chest and abdominal pain, belching, bloating, discolored stool, excessive salivation, dry mouth, and trouble swallowing.
  • Cardiovascular symptoms include high or low blood pressure, fast or slow heart rate, irregular heartbeat, and poor circulation.
  • Neuropsychiatric symptoms include brain fog, difficulty concentrating, difficulty sleeping at night, excessive tiredness during the day, grogginess, anxiety, depression, tremors, numbness, weakness, burning and tingling (pins and needles), hearing loss, and auditory processing (difficulty understanding what was said to you).
  • Genitourinary symptoms include bladder pain, painful urination, painful intercourse/sexual activities, painful or irregular menstrual cycle (periods), and excessive or inadequate urination (too much or too little urine produced).
  • Respiratory symptoms include cough, excessive phlegm, wheezing, runny nose, sinus congestion, sneezing, and swelling of the airway.
  • General symptoms include fatigue, lack of stamina, difficulty exercising, itchy or watery eyes, and bruising easily.
  • There are some additional symptoms that I have observed in a large number of people that are not classically considered mast cell symptoms, but I now firmly believe them to be. One is fever. I think discoloration of the skin may be mast cell related for some people. Another is dystonia, involuntary muscle contraction, which can mimic appearance of a seizure. There are also different seizure-type episodes that may occur due to the nervous system being overactive. I am reluctant to call them pseudoseizures because that term specifically means they are caused as a result of mental illness. I have no evidence that these seizure-type episodes in mast cell patients occur due to mental illness. I personally refer to them as “mast cell derived seizures.” (For people who are wondering, I have been heavily researching this phenomenon and have some theories about why this happens. It’s not fleshed out enough yet to post but it’s on my think list.)
  • Having mast cell disease can make you more likely to have other conditions that cause symptoms.
  • I’m sure there are other symptoms I have forgotten to mention.

7. Why are skin and GI symptoms so common?

  • The skin has a lot of mast cells relative to other tissues. Your skin also comes into contact with lots of things in the environment. Think about the things your skin touches on a daily basis! It makes sense that it would get the exposure so skin symptoms can be common. Additionally, some of the chemicals mast cells release can cause fluid to become trapped in the skin. For these reasons, symptoms affecting the skin are pretty common.
  • The GI tract also has a lot of mast cells relative to other tissues. Your GI tract also comes in contact with lots of things in the environment. Let’s think about this for a minute. Your GI tract is essentially one long tube through your body. You put things from the environment in your GI tract at the top and they come back out the bottom of the tract. In a way, your GI tract is kind of like the outside of the inside of your body.
  • This is the analogy I learned in anatomy and physiology class to visualizing the GI tract as the outside of the inside of the body. Think of the body as a donut. (A low histamine, fully allergy friendly, requires no GI motility, wonderful donut.) Now think of the GI tract as the donut hole. You can put your finger through the hole in the middle of the donut. Only that center part of the donut will touch your finger. This is kind of like putting food throughout the GI tract. That food only touches a very small part of the body as it passes through.
  • Since what we put into our mouths (or other GI openings) is from the outside, your body has many mast cells in the GI tract to protect the body. Some of the chemicals mast cells release can cause fluid to become trapped in the layers of GI tissue. Some of the medications we take for mast cell disease can affect the GI tract. Some of them change how much acid we make in our stomachs. Some of them slow down the GI tract. A few of them speed it up or make the GI tract more fragile. For these reasons, symptoms affecting the GI tract are very common.

For more detailed reading, please visit these posts:

The Provider Primer Series: Management of mast cell mediator symptoms and release

The Provider Primer Series: Mast cell activation syndrome (MCAS)

The Provider Primer Series: Cutaneous Mastocytosis/ Mastocytosis in the Skin

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (SM-AHD, MCL, MCS)

The Provider Primer Series: Relevance of mast cells in common health scenarios

 

Symptom Cough
Role of mast cells Several mast cell mediators contribute to airway inflammation and subsequent symptoms including cough:

•             Histamine promotes bronchoconstriction, excessive production of mucus, and airway edema.[i]

•             Prostaglandin D2 promotes bronchoconstriction, mucus production, and airway edema.[i]

•             Leukotrienes C4 and D4 and chymase also contribute to mucus production and airway edema.[i]

•             Tryptase promotes overall increased reactivity of the airway.[i]

Chronic airway inflammation, as in asthma, is sometimes associated with increased mast cell population in pulmonary tissues.[i]

Mast cells remain activated in inflamed airways.[i]

Impact of condition on mast cells Mast cell activation can occur as a result of the physical stimuli such as coughing[ii].

Pain can trigger mast cell activation[iii].

Notes regarding condition treatment Dextromethorphan can trigger mast cell degranulation[iv].

Codeine and derivatives can trigger mast cell degranulation[v].

Beta-2 adrenergic agonists, inhaled and oral steroids, and inhaled cromolyn are frequently used in mast cell patients[vi].

Notes regarding mast cell treatment Antihistamines, leukotriene receptor antagonists, and COX inhibitors are routinely taken by mast cell patients and can provide relief.[vii]

Racemic epinephrine can provide relief of pulmonary symptoms.[viii]

Special considerations for mast cell patients Chronic dry, unproductive cough sometimes occurs in mast cell patients.[ix]

Mast cell patients frequently have reactive airways.[ix]

Mast cells can produce and release prostaglandin E2, a mediator that participates in asthmatic inflammation and cough[x].

Prostaglandin E2 can also downregulate or promote mast cell degranulation via binding at prostaglandin E2 receptors on mast cell surface[x].

 

Symptom Sore throat
Role of mast cells Pain can trigger mast cell activation.[iii]
Impact of condition on mast cells Mast cell driven nasal congestion can result in postnasal drip can irritate the throat.[ix]

Mast cell irritation of the throat can present similarly to infection by Streptococcus spp. or other pathogen. Cultures should be taken to properly evaluate for infection.[ix]

Viral, bacterial and fungal infection will activate mast cells through toll like receptors and through perpetuated inflammatory signaling.[xiii]

Notes regarding condition treatment Acetaminophen is recommended for pain relief in mast cell patients.[iv]
Notes regarding mast cell treatment Antihistamines and COX inhibitors are routinely taken by mast cell patients and can provide relief.[vi]
Special considerations for mast cell patients Angioedema of the throat driven by mast cell disease is always a consideration in mast cell patients. If angioedema secondary to mast cell disease impinges upon airway, epinephrine and subsequent anaphylaxis treatments should be undertaken.[vii]

Oral allergy syndrome should be considered.[ix]

 

Symptom Rash
Role of mast cells Acute urticaria is usually driven by mast cell and basophil activation through IgE or non-IgE pathways.[xi]

Mast cell mediators histamine, leukotrienes and platelet activating factor contribute to itching.[xii]

Impact of condition on mast cells Viral, bacterial and fungal infection will activate mast cells via toll like receptors and perpetuated inflammatory signaling.[xiii]

Non-mast cell driven conditions causing skin rashes can irritate mast cells in the skin.[xii]

Pain can trigger mast cell activation.[iii]

Notes regarding condition treatment Some -azole antifungals can induce mast cell degranulation.[xiv]
Notes regarding mast cell treatment Antihistamines and steroids, topical or systemic, and topical cromolyn can provide relief.[xii]
Special considerations for mast cell patients Mediator release by activated mast cells can produce systemic symptoms.[x]

In patients with a history of mast cell disease, mastocytosis in the skin should be considered.

o             Cutaneous mastocytosis accounts for approximately 90% of mastocytosis cases.[xii]

o             Cutaneous mastocytosis lesions demonstrate Darier’s sign, a wheal and flare reaction to touch.[xii]

o             A skin biopsy is necessary to confirm a diagnosis of cutaneous mastocytosis.[xii]

o             Patients with adult onset cutaneous mast cell lesions are usually later found to have systemic mastocytosis.[xii]

 

Symptom Fever
Role of mast cells Mast cells can produce prostaglandin E2.[x]

Mast cells can produce and release several pyrogens, including IL-1α, IL-1β, IL-6, IL-8, TNF, interferon-α, interferon-β, and interferon-γ.[x]

Impact of condition on mast cells Prostaglandin E2 can also downregulate or promote mast cell degranulation via binding at prostaglandin E2 receptors on mast cell surface.[x]

Pain can trigger mast cell activation.[iii]

Viral, bacterial and fungal infection will activate mast cells via toll like receptors and perpetuated inflammatory signaling.[xiii]

Notes regarding condition treatment NSAIDS can trigger mast cell degranulation. Some mast cell patients are unable to take them.[xv]

Acetaminophen is generally recommended for use in mast cell patients.[iv]

Notes regarding mast cell treatment COX inhibitors are routinely taken by mast cell patients and may provide relief.[vi]
Special considerations for mast cell patients

 

Symptom Earache
Role of mast cells Mast cells are involved in the transmission of pain stimuli, including nerve pain.[iii]

Mast cells are involved in sensorineural hearing loss and tinnitus.[ix]

Impact of condition on mast cells Pain can trigger mast cell activation.[iii]

Viral, bacterial and fungal infection will activate mast cells via toll like receptors and perpetuated inflammatory signaling.[xiii]

Notes regarding condition treatment NSAIDS can trigger mast cell degranulation. Some mast cell patients are unable to take them.[xv]

Acetaminophen is generally recommended for use in mast cell patients.[iv]

Steroids (local and systemic) can stabilize mast cells.[vi]

Notes regarding mast cell treatment COX inhibitors are routinely taken by mast cell patients and may provide relief.[vi]

Antihistamines can provide relief for vestibular symptoms.[vi]

Special considerations for mast cell patients Hearing loss, tinnitus and hyperacusis sometimes occur in mast cell patients.[ix]

Sensorineural hearing loss of unknown origin has been documented in mast cell patients.[ix]

Some mast cell patients also have Ehlers Danlos Syndrome which can cause conductive hearing loss.[ix]

Mast cell disease can also cause auditory processing disorder.[ix]

Red ears are a common sign of mast cell activation. Sometimes, only one ear is affected.[ix]

 

Symptom Stomachache
Role of mast cells Mast cells are commonly found in the GI tract.[xvi]

Mast cell activation is involved in a number of GI conditions, including inflammatory bowel disease, ulcerative colitis and food allergies.[xvi]

Mast cell activation can cause chronic diarrhea, pseudoobstruction, obstruction, dysmotility, constipation, nausea, vomiting, and visceral GI pain.[xvi]

Impact of condition on mast cells GI inflammation can recruit mast cells to inflamed tissues.[xvi]

GI inflammation can trigger mast cell mediator release.[xvi]

Pain can trigger mast cell activation.[iii]

Viral, bacterial and fungal infection will activate mast cells via toll like receptors and perpetuated inflammatory signaling.[xiii]

Notes regarding condition treatment
Notes regarding mast cell treatment Histamine H2 blockers and PPIs are commonly taken by mast cell patients and can provide relief.[vi]
Special considerations for mast cell patients Mast cell patients can experience a wide array of severe GI symptoms with or without dense infiltration of GI tract by mast cells.[ix]

 

[i] Cruse G, Bradding P. (2016). Mast cells in airway diseases and interstitial lung disease. European Journal of Pharmacology 778, 125-138.

[ii] Zhang D, et al. (2012). Mast-cell degranulation induced by physical stimuli involves the activation of transient receptor-potential channel TRPV2. Physiol Res, 61(1):113-124.

[iii] Chatterjea D, Martinov T. (2015). Mast cells: versatile gatekeepers of pain. Mol Immunol, 63(1),38-44.

[iv] Dewachter P, et al. (2014). Perioperative management of patients with mastocytosis. Anesthesiology, 120, 753-759.

[v] Brockow K, Bonadonna P. (2012). Drug allergy in mast cell disease. Curr Opin Allergy Clin Immunol, 12, 354-360.

[vi] Molderings GJ, et al. (2016). Pharmacological treatment options for mast cell activation disease. Naunyn-Schmiedeberg’s Arch Pharmol, 389:671.

[vii] Molderings GJ, et al. Mast cell activation disease: a concise, practical guide to diagnostic workup and therapeutic options. J Hematol Oncol 2011; 4 (10).

[viii] Walsh P, et al. (2008). Comparison of nebulized epinephrine to albuterol in bronchiolitis. Acad Emerg Med, 15(4):305-313.

[ix] Afrin LB. (2013). Diagnosis, presentation and management of mast cell activation syndrome. Mast cells.

[x] Theoharides TC, et al. (2012). Mast cells and inflammation. Biochimica et Biophysica Acta (BBA) – Molecular Basis of Disease, 1822(1), 21-33.

[xi] Bernstein JA, et al. (2014). The diagnosis and management of acute and chronic urticaria: 2014 update. J Allergy Clin Immunol, 133(5):1270-1277.

[xii] Hartmann K, et al. (2016). Cutaneous manifestations in patients with mastocytosis: consensus report of the European Competence Network on Mastocytosis; the American Academy of Allergy, Asthma and Immunology; and the European Academy of Allergology and Clinical Immunology. Journal of Allergy and Clinical Immunology, 137(1):35-45.

[xiii] Sandig H, Bulfone-Paul S. (2012). TLR signaling in mast cells: common and unique features. Front Immunol, 3;185.

[xiv] Toyoguchi T, et al. (2000). Histamine release induced by antimicrobial agents and effects of antimicrobial agents on vancomycin-induced histamine release from rat peritoneal mast cells.  Pharm Pharmacol, 52(3), 327-331.

[xv] Grosman N. (2007). Comparison of the influence of NSAIDs with different COX-selectivity on histamine release from mast cells isolated from naïve and sensitized rats. International Immunopharmacology, 7(4), 532-540.

[xvi] Ramsay DB, et al. (2010). Mast cells in gastrointestinal disease. Gastroenterology & Hepatology, 6(12): 772-777.

 

Symptoms, mediators and mechanisms: A general review (Part 1 of 2)

Skin symptoms    
Symptom Mediators Mechanism
Flushing Histamine (H1), PGD2 Increased vasodilation and permeability of blood vessels

Blood is closer to the skin and redness is seen

Itching Histamine (H1), leukotrienes LTC4, LTD4, LTE4, PAF Possibly stimulation of itch receptors or interaction with local neurotransmitters
Urticaria Histamine (H1), PAF, heparin, bradykinin Increased vasodilation and permeability of blood vessels and lymphatic vessels

Fluid is trapped inappropriately between layers of skin

Angioedema Histamine (H1), heparin, bradykinin, PAF Increased vasodilation and permeability of blood vessels and lymphatic vessels

Fluid is trapped inappropriately between layers of tissue

 

Respiratory symptoms    
Symptom Mediators Mechanism
Nasal congestion Histamine (H1), histamine (H2), leukotrienes LTC4, LTD4, LTE4 Increased mucus production

Smooth muscle constriction

Sneezing Histamine (H1), histamine (H2), leukotrienes LTC4, LTD4, LTE4 Increased mucus production

Smooth muscle constriction

Airway constriction/ difficulty breathing Histamine (H1), leukotrienes LTC4, LTD4, LTE4, PAF Increased mucus production

Smooth muscle constriction

 

Cardiovascular symptoms    
Symptom Mediators Mechanism
Low blood pressure Histamine (H1), PAF,  PGD2, bradykinin Decreased force of heart contraction

Increased vasodilation and permeability of blood vessels

Impact on norepinephrine signaling

Change in heart rate

Presyncope/syncope (fainting) Histamine (H1), histamine (H3), PAF, bradykinin Increased vasodilation and permeability of blood vessels

Decrease in blood pressure

Dysfunctional release of neurotransmitters

High blood pressure Chymase,  9a,11b-PGF2, renin, thromboxane A, carboxypeptidase A Impact on renin-angiotensin pathway

Impact on norepinephrine signaling

Tightening and decreased permeability of blood vessels

Tachycardia Histamine (H2), PGD2 Increasing heart rate

Increasing force of heart contraction

Impact on norepinephrine signaling

Arrhythmias Chymase, PAF, renin Impact on renin-angiotensin pathway

Impact on norepinephrine signaling

 

Gastrointestinal symptoms    
Symptom Mediators Mechanism
Diarrhea Histamine (H1), histamine (H2), bradykinin, serotonin Smooth muscle constriction

Increased gastric acid secretion

Dysfunctional release of neurotransmitters

Gas Histamine (H1), histamine (H2), bradykinin Smooth muscle constriction

Increased gastric acid secretion

Abdominal pain Histamine (H1), histamine (H2), bradykinin, serotonin Smooth muscle constriction

Increased gastric acid secretion

Dysfunctional release of neurotransmitters

Nausea/vomiting Histamine (H3), serotonin Dysfunctional release of neurotransmitters
Constipation Histamine (H2), histamine (H3), serotonin (low) Dysfunctional release of neurotransmitters

 

Mast cell mediators: Prostaglandin D2 (PGD2)

Prostaglandin D2 (PGD2) is the predominant prostaglandin product released by mast cells. It is found prevalently in the central nervous system and peripheral tissues, where it performs both inflammatory and normal processes. In the brain, PGD2 helps to regulate sleep and pain perception. PGD2 can be further broken down into other prostaglandins, including PGF2a; 9a, 11b-PGF2a (a different shape of PGF2a), and forms of PGJ. 9a, 11b-PGF2a shares the same biological functions as PGD2. Both of these can be tested for in 24 hour urine test as markers of mast cell disease.

PGD2 is a strong bronchoconstrictor. It is 10.2x more potent in this capacity than histamine and 3.5x more potent than PGF2a. It has been associated with inflammatory and atopic conditions for many years. Presence of allergen activates PGD2 production in sensitized people. In asthmatics, bronchial samples can achieve over 150x the level of PGD2 compared to controls. Elevated PGD2 has been associated with chronic coughing.

PGD2 is a driver of inflammation in many settings. It acts on bronchial epithelium to cause production of chemokines and cytokines. It also brings lymphocytes and eosinophils to the airway, which induces airway inflammation and hyperreactivity in asthmatics. PGD2 may also inhibit eosinophil cell death, resulting in further inflammation.

An interesting facet of PGD2 is its role in nerve pain. It has been found that PGD2 is produced by microglia in the spine after a peripheral nerve injury. These cells make more COX-1, which then makes PGD2. Newer COX-2 inhibiting NSAIDs do not affect nerve pain in mouse models, but older NSAIDs that inhibit COX-1 and COX-2 reduce neuropathy.

PGD2 is found to inhibit inflammation in other settings. It can reduce eosinophilia in allergic inflammation in mouse models. Additionally, once the acute phase of inflammation is over and it is resolving, administering a COX-2 inhibitor actually makes the inflammation worse. This indicates that PGD2 may be important in resolving inflammation in some processes.

Aspirin is commonly used in mast cell patients to inhibit prostaglandin production. PGD2 is primarily manufactured by COX-2, but the pathway that evokes neuropathy uses COX-1. There are a number of COX-1 and COX-2 inhibitors available.

In mast cell patients, PGD2 is probably most well known for causing flushing. This happens due to dilation of blood vessels in the skin. Due to a well characterized response to aspirin, this is generally the first line medication choice. Some salicylate sensitive mast cell patients undergo aspirin desensitization to be able to use this medication.

 

References:

Emanuela Ricciotti, Garret A. FitzGerald. Prostaglandins and Inflammation. Arterioscler Thromb Vasc Biol. 2011; 31: 986-1000.

Matsuoka T, Hirata M, Tanaka H, Takahashi Y, Murata T, Kabashima K, Sugimoto Y, Kobayashi T, Ushikubi F, Aze Y, Eguchi N, Urade Y, Yoshida N, Kimura K, Mizoguchi A, Honda Y, Nagai H, Narumiya S. Prostaglandin D2 as a mediator of allergic asthma. Science. 2000;287: 2013–2017.

G Bochenek, E Nizankowska, A Gielicz, M Swierczynska, A Szczeklik. Plasma 9a,11b-PGF2, a PGD2 metabolite, as a sensitive marker of mast cell activation by allergen in bronchial asthma. Thorax 2004; 59: 459–464.

Victor Dishy, MD, Fang Liu, PhD, David L. Ebel, BS, RPh, George J. Atiee, MD, Jane Royalty, MD, Sandra Reilley, MD, John F. Paolini, MD, PhD, John A. Wagner, MD, PhD, and Eseng Lai, MD, PhD. Effects of Aspirin When Added to the Prostaglandin D2 Receptor Antagonist Laropiprant on Niacin-Induced Flushing Symptoms. Journal of Clinical Pharmacology, 2009; 49: 416-422

MCAS: Respiratory symptoms

Pharyngeal (throat) symptoms are quite common in MCAS and as usual, highly variable. Burning, painful, and irritated throats are frequently reported, and often automatically treated as viral infection or Strep throat, with no culture or negative culture. This pain can be chronic or intermittent. A chronic tickle in the throat or need to clear the throat is often present. Sinus congestion can lead to postnasal drip.

Sometimes MCAS reactions are localized to the throat, inhibiting ability to swallow or sometimes even breathe. This symptom is due to angioedema, and if breathing difficulty is observed, emergency treatment with epinephrine is required.

The most frequently noted lower respiratory symptom is a low level difficulty of breathing. This often presents as occasional wheezing, or feeling like you can’t get a deep breath. Patients rarely have severe wheezing, though it does sometimes happen. Chest x-ray and pulmonary function testing are usually normal.

Chronic non-productive cough affects a small portion of MCAS patients. They are often diagnosed with reactive airway disease for lack of a better explanation. Prostaglandin D2 is a potent bronchoconstrictor, approximately 10 times more potent than histamine, and is responsible in part for respiratory symptoms.

Mast cells have been implicated a variety of pulmonary pathologies, including COPD and pulmonary hypertension. Allergic asthma is not uncommon in MCAS patients and this population often reports successful treatment with Xolair.

References:

Afrin, Lawrence B. Presentation, diagnosis and management of mast cell activation syndrome. 2013. Mast cells.

Anand P, et al. Mast cells: an expanding pathophysiological role from allergy to other disorders. Naunyn-Schiedeberg’s Arch. Pharmacol. 2012 May.