Interplay between mast cells and hormones: Part 3 of 8

Hormone Location released Major functions Interaction with mast cells Reference
Dopamine Hypothalamus

Adrenal gland (medulla)

Inhibit prolactin released from pituitary

Increase heart rate and blood pressure

Inhibit norepinephrine release

 

 

Enhances mast cell degranulation

Perpetuates immediate and late phase hypersensitivity reactions

H3 receptor activation inhibits dopamine production

Dopamine is released by mast cells

H1 inverse agonists increase dopamine release

Histamine increases dopamine release

Mori T, et al. D1-like dopamine receptors antagonist inhibits cutaneous immune reactions mediated by Th2 and mast cells. Journal of Dermatological Science 2013: 71, 37-44.

Xue L, et al. The effects of D3R on TLR4 signaling involved in the regulation of METH-mediated mast cell activation. International Immunopharmacology 2016: 36. 187-198.

Endothelin Stomach Promotes smooth muscle contraction of stomach

Very potent vasoconstrictor

Activates mucosal mast cells

Mast cells regulate endothelin levels to prevent loss of blood flow to tissues

Boros M, et al. Endothelin-1 induces mucosal mast cell degranulation and tissue injury via ETA receptors. Clin Sci (Lond) 2007: 103(48), 31S-34S.

Hultner L, Ehrenreich H. Mast cells and endothelin-1: a life-saving biological liaison. Trends Immunol 2005: 26(5), 235-238.

 

Epinephrine/ adrenaline Adrenal gland (medulla), sympathetic nervous system Fight or flight response

Increases heart rate, force of heart contraction, blood pressure, energy breakdown, production of ACTH, bloodflow and energy to the brain and muscles

Suppresses nonessential functions and significantly decreases GI motility and excretion of urine and stool

Epinephrine inhibits IgE mediated released of histamine, prostaglandins and TNF

Epinephrine inhibits mast cell proliferation, adhesion and movement within the body SCF reduces action of epinephrine on mast cells by decreasing B2 adrenergic receptors

 

 

Cruse G, et al. Counterregulation of beta(2)-adrenoceptor function in human mast cells by stem cell factor. J Allergy Clin Immunol 2010: 125(1), 257-263.

Scanzano A, Cosentino M. Adrenergic regulation of innate immunity: a review. Front Pharmacol 2015.

Erythropoietin Kidney Stimulate red blood cell production

Protects nerve cells and tissues

During low oxygen events, mast cells express receptors for erythropoietin

Erythropoietin can bind at the CKIT receptor

Decreases inflammatory response to infection (decreases IL-6 and TNF)

Wiedenmann T, et al. Erythropoietin acts as an anti-inflammatory signal on murine mast cells. Mol Immunol 2015: 65(1), 68-76.
Estradiol and other estrogens Ovaries, placenta, adipose tissue, testes Drive female secondary sex characteristics

Increase metabolism, uterine and endometrial growth, bone production, and the release of cholesterol in bile

Increase production of proteins in liver, cortisol, sex hormone binding globulin, somatostatin, clotting factors II, VII, IX, X, antithrombin III and plasminogen, HDL, triglycerides

Decrease LDL, production of adipose tissue, GI motility

 

 

Modulate salt and water retention

Inhibits programmed cell death of germ cells

E2 is a very potent mast cell degranulator

E2 drives mast cell degranulation in ovaries to trigger ovulation

Enhances IgE mediated degranulation

Increased production of leukotrienes

Increases mast cell density in ovaries

Zaitsu M, et al. Estradiol activates mast cells via a non-genomic estrogen receptor-a and calcium influx. Mol Immunol 2007: 44(8), 1977-1985.

Zierau O, et al. Role of female sex hormones, estradiol and progesterone, in mast cell behavior. Front Immunol 2012: 3, 169.

Follicle stimulating hormone (FSH) Pituitary Stimulates maturation of ovarian follicles

Stimulates maturation of seminiferous tubules, production of sperm and production of androgen binding protein

Triggers mast cell degranulation

Increases mast cell density in ovaries

Theoharides TC, Stewart JM. Genitourinary mast cells and survival. Transl Androl Urol 2015: 4(5), 579-586.

Jaiswal K, Krishna A. Effects of hormones on the number, distribution and degranulation of mast cells in the ovarian complex of mice. Acta Physiol Hung 1996: 84(2), 183-190.

Gastric inhibitory polypeptide/ glucose-dependent insulinotropic polypeptide (GIP) Duodenum, jejunum Triggers release of insulin

Involved in fatty acid metabolism

Involved in bone formation

May suppress release of stomach acid triggered by histamine McIntosh CHS, et al. Chapter 15 Glucose-Dependent Insulinotropic Polypeptide (Gastric Inhibitory Polypeptide; GIP). Vitamins & Hormones 2009: 80, 409-471.
Gastrin Stomach, duodenum, pancreas Release of gastric acid

Release of pepsinogen, the precursor to pepsin

Triggers secretion of pancreatic enzyme

Triggers emptying of gallbladder

Increases stomach motility

Triggers release of histamine in enterochromaffin-like cells to trigger gastric acid secretion

Triggers mast cell degranulation

Gastrin releasing peptide, which induces gastrin release, triggers histaminergic itching response

Akiyama T, et al. Roles of glutamate, substance P, and gastrin-releasing peptide as spinal neurotransmitters of histaminergic and nonhistaminergic itch. Pain 2014: 155, 80-92.