Ruthless

I was discharged from the hospital last night. I was admitted on Monday after going to the ER. I wasn’t having anaphylaxis. I wasn’t sure exactly what was wrong. But I felt disgusting. I had a pounding headache and bad bone pain in both legs and my pelvic bones. I was exhausted. I was so tachycardic that it made me short of breath. My blood pressure was all over the place. I was miserable. Nothing I did was helping. So I went in.

I am adrenally insufficient. I have been for years, since daily high dose prednisone in 2013/2014. My body doesn’t make cortisol so I have to take daily steroids to compensate. When my body is under physical stress, I have to take more steroids to cover the additional need for stress hormones. If I don’t, it can cause a life threatening situation called an Addisonian crisis. I had a crisis in May 2014 that lasted several days. Since then, I am very careful to monitor my body for signs of low cortisol.

In case it’s not obvious where I’m going with this, I was having an Addisonian crisis. My cortisol level was almost undetectable. It didn’t feel like it has in the past and I have no idea what triggered it. I took some extra steroids and stayed a while to see how much it helped. I sat in my hospital bed all night, headphones in, doing work. Work is rapidly becoming the only thing in my life I can control.

I take a lot of medications. I take handfuls of pills every day. I use IV meds and IV fluids every day. I get weekly and monthly injections. The schedule I have to keep in order to accommodate taking all those meds is insane. I basically take medication every thirty minutes while I’m awake. I have to carefully time my meals and anything I drink. I can only exercise at specific times. I can only shower 1-2 hours after night time meds. I have to be very careful with things like public transportation and going to a crowded place in case I get stuck somewhere.

I professionally develop diagnostics to determine which patients will benefit best from clinical trial therapies. It is easier to develop diagnostics than to manage my health from day to day.

People often ask how I am able to travel and work full time. IV Benadryl is not the entire reason I can do those things but it is a huge part of it. I have been using IV Benadryl at home for almost four years. It has kept me out of the hospital on many occasions. It has prevented many reactions from turning into anaphylaxis. It gives me much more control in emergency situations and has kept me safe in many situations that could otherwise have been catastrophic.

Despite how much this drug has helped me, I literally get anxiety thinking about how much IV Benadryl has helped me. The reason for this is that it is a nightmare getting ahold of it. It is not expensive and it is not a controlled substance. Still, getting this is a weekly stressor. I get all my IV meds, infusions, and line care/nursing through a home infusion company. Despite the fact that they provide me with a supply of everything else I need several days before I need them, they will not do this with Benadryl. My doctor has asked. I have asked. My nursing team has asked. I have asked all the people who can be asked. The pharmacy will not do it. Instead, they insist that they deliver me meds on the day that I will be out of them, meaning that if that order does not arrive as expected, I could be out of medication.

I have been a patient there for four years. My nursing care and line care has been amazing. That’s why I have stayed there. I have had a continuously used central line for all that time. I have never had an infection. The reason I have never had an infection is because I adhere to really extraordinary guidelines pertaining to contamination. If I think there is a tiny chance that something is contaminated, I just throw it away and start over. If a needle slips, or I drop something, or accidentally touch a surface with the syringe, I throw it away. This means that I throw away a vial of Benadryl every few days. I have asked the pharmacy to provide me with a few extra days of meds every few months to cover for this situation. They won’t.

The worst part of this whole situation is that my meticulousness, which is regularly commended by my providers, means that I am already working with less medication than I should be. Compounded with this pharmacy’s actions, I have been left without medication on several occasions.

Someone new at this pharmacy recently decided that they would send me my meds a day early. This seemed like a great plan. I was totally onboard. But I was still nervous that it would get messed up. It also didn’t allow for short term changes or short notice deliveries. Earlier this week, when I was in the ER before being admitted, I had to use my own meds for more frequent dosing because they weren’t getting my meds on time. (This was acknowledged and approved by the ER team – I would never do this unless they were aware and onboard.)

The bottom line is that my pharmacy delivery is going to be a day late again after being assured again today that it would arrive today. Because I had to discard two vials over this past weekend for possible contamination and I needed to use extra on Monday (as directed), I am now out of this med. Again.

I had a legit breakdown tonight when I realized that I was going to be out of this med again. Screaming, hysterically crying, the whole thing. This has been such a struggle for so long over something that is really, really stupid to argue about. No one argues that I don’t need the med. I don’t take more than I am directed, ever. No one argues that I should discard anything that might be contaminated and start over. But no one in any position to authorize something as silly as giving me three or four extra vials a week will do so. So I will be up all night hoping I don’t end up having anaphylaxis and going to the hospital if I have serious symptoms that could potentially become anaphylaxis even if they didn’t start that way.

I am very, very tired of this life. I have lots of good days. But as time as gone on, the bad days have gotten much worse. There is no aspect of living with chronic, life threatening health problems that is not stress. I really want to just rip this port out and stop taking IV meds and stop working and stop fighting every single day. I just want to rest. I want it to be quiet. I don’t want to have to explain myself over and over and beg people who just don’t care to help me.

 

There is a ruthless truth to chronic illness, one that has taken me years to come to terms with. It is this: that fighting against my illness and the life it gave me is not a successful way to improve it. I cannot overcome this disease. I can only cooperate with it. I have to learn to live with it, have a relationship with it, greet it every morning and say goodnight when I close my eyes at night. It is a part of me that cannot be cut out or ignored. And to have a life with it, a good one, I have to want that life. I can’t fight for a life I don’t want. My insistence upon having a good life with this disease is not a choice. It is a survival mechanism. It an instinct.

I know that this will pass, but there are some days when I don’t want to do this.

I don’t want to fight anymore. I don’t want to be afraid.

And tonight, I don’t want this life.

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 76

I get asked a lot about how mast cell disease can affect common blood test results. I have broken this question up into several more manageable pieces so I can thoroughly discuss the reasons for this. The next few 107 series posts will cover how mast cell disease can affect red blood cell count; white blood cell count, including the counts of specific types of white blood cells; platelet counts; liver function tests; kidney function tests; electrolytes; clotting tests; and a few miscellaneous tests.

89. How does mast cell disease affect platelet counts?

Before I continue, I want to explain one basic fact. Even though they are often included in the term “blood cells”, platelets are not actually cells. They are actually pieces of an original large cell called a megakaryocyte that lives in the bone marrow. Even though platelets are not really cells, they more or less act like they are.

An unusual thing about platelets is that sometimes a specific trigger can cause platelets to become lower or higher.

There are several ways in which mast cell disease can make platelet counts lower.

  • Swelling of the spleen. This can happen in some forms of systemic mastocytosis, and may also happen in some patients with mast cell activation syndrome, although the reason why it happens in MCAS is not as clear. Swelling of the spleen can damage blood cells and platelets, causing lower platelet counts. If the spleen is very stressed and working much too hard, a condition called hypersplenism, the damage to blood cells and platelets is much more pronounced. This may further lower platelet counts. Hypersplenism occurs in aggressive systemic mastocytosis or mast cell leukemia. It is not a feature of other forms of systemic mastocytosis and I am not aware of any cases as a result of mast cell activation syndrome.
  • Medications. Some medications that are used to manage mast cell disease can cause low red blood cell count. Chemotherapies, including targeted chemotherapies like tyrosine kinase inhibitors, can cause low platelet counts. Non steroidal anti-inflammatory drugs (NSAIDs) are used by some mast cell patients to decrease production of prostaglandins. They can interfere with platelet production in the bone marrow. Proton pump inhibitors, often used by mast cell patients to help with GI symptoms like heart burn, can decrease platelet coun Some H2 antihistamines can also lower platelet production. However, none of these H2 antihistamines are currently used in medicine.
  • Heparin induced thrombocytopenia. Mast cells make and release large amounts of heparin, a powerful blood thinner. When there is an excessive amount of heparin circulating, it can cause your body to incorrectly produce antibodies that cause an immune response to heparin. A side effect of this situation is that platelets are activated incorrectly, which can lead to the formation of blood clots and low platelet counts. Heparin induced thrombocytopenia has only been definitively described in patients who receive medicinal heparin as a blood thinner. However, it is reasonable to assume that this situation can also affect mast cell patients who have higher than normal levels of platelets circulating in the blood.
  • Liver damage. Liver damage is associated with malignant forms of systemic mastocytosis such as aggressive systemic mastocytosis and mast cell leukemia. Liver damage can also occur as the result of IV nutrition, which is sometimes needed by patients with mastocytosis or mast cell activation syndrome. When the liver is damaged enough, it may not make enough of the molecules that tell the bone marrow to make platelets.
  • Excessive production of blood cells. In very aggressive forms of systemic mastocytosis, aggressive systemic mastocytosis or mast cell leukemia, the bone marrow is making huge amounts of mast cells. As a result, the bone marrow makes fewer platelets and cells of other types.
  • Vitamin and mineral deficiencies. Chronic inflammation can affect the way your body absorbs vitamins and minerals through the GI tract, and the way it uses vitamins and minerals that it does absorb. Deficiency of vitamin B12 or folate can decrease platelet production.
  • Excess fluid in the bloodstream (hypervolemia). In this situation, the body doesn’t actually have too few platelets, it just looks like it. If your body loses a lot of fluid to swelling (third spacing) and that fluid is mostly reabsorbed at once, the extra fluid in the bloodstream can make it look like there are too few platelets if they do a blood test. This can also happen if a patient receives a lot of IV fluids.

There are also reasons why mast cell disease can cause the body to make too many platelets.

  • Anemia of chronic inflammation. This is when chronic inflammation in the body affects the way the body absorbs and uses iron. It can result in iron deficiency. Iron deficiency can increase platelet counts.
  • Hemolytic anemia. In hemolytic anemia, the body destroys red blood cells. This can happen for several reasons that may be present in mast cell patients. Hemolytic anemia can increase platelet counts.
  • Iron deficiency. Iron deficiency for any reason can elevate platelet counts.
  • Excessive bleeding. Mast cell disease can cause excessive bleeding in several ways. Mast cells release lots of heparin, a very potent blood thinner that decreases clotting. This makes it easier for the body to bleed. It is not unusual for mast cell patients to have unusual bruising. Bleeding in the GI tract can also occur. Mast cell disease can cause ulceration, fissures, and hemorrhoids, among other things. Mast cell disease can contribute to dysregulation of the menstrual cycle, causing excessive bleeding in this way. It is not unusual for mast cell patients to have GI bleeding, as well as ulceration, fissures, and hemorrhoids.
  • Sustained GI inflammation. Sustained GI inflammatory disease can cause elevated levels of platelets. Given what we know about mast cell driven GI inflammation, it is reasonable to infer that mast cell GI effects and damage may also elevate platelet levels.
  • Clot formation. If a large clot forms, it can affect the amount of platelets circulating in the blood. Some mast cell patients require central lines for regular use of IV therapies or to preserve IV access in the event of an emergency. Blood clots can form on the outside surface of the line, inside the line, or between the line and the wall of the blood vessel it is in.
  • General inflammation. Platelets are activated by a variety of molecules released when the body is inflamed for any reason. This can translate to increased levels of platelet production.
  • Allergic reactions. Platelets can be directly activated by mast cell degranulation through molecules like platelet activating factor (PAF).
  • Heparin. Heparin can cause platelet levels to increase. As I mentioned above, it can also cause platelet levels to decrease.
  • Removal of the spleen. The spleen can become very stressed and work too hard, a condition called This situation is remedied by removing the spleen. Hypersplenism occurs in aggressive systemic mastocytosis or mast cell leukemia. It is not a feature of other forms of systemic mastocytosis and I am not aware of any cases as a result of mast cell activation syndrome.
  • Glucocorticoids. In particular, prednisone is known to increase platelet counts. Prednisone and other glucocorticoids can be used for several reasons in mast cell patients.
  • Third spacing. If a lot of fluid from the bloodstream becomes trapped in tissues (third spacing), there is less fluid in the bloodstream so it makes it look like there are too many cells. As I mentioned above, this is not really a scenario where you are making too many red blood cells, it just looks like that on a blood test.

For additional reading, please visit the following posts:

Anemia of chronic inflammation

Effect of anemia on mast cells

Mast cell disease and the spleen

MCAS: Anemia and deficiencies

Mast cells, heparin and bradykinin: The effects of mast cells on the kinin-kallikrein system

MCAS: Blood, bone marrow and clotting

Third spacing

Gastrointestinal manifestations of SM: Part 1

Gastrointestinal manifestations of SM: Part 2

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 72

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 73

Crazy

I took a long, hot shower tonight. Hot showers are my guilty pleasure. The heat and the standing in one place can trigger both mastocytosis and POTS symptoms. I can make myself do a lot of unpleasant things. I will not sacrifice this. I cannot make myself take a lukewarm shower. I just deal with the symptoms.

Tonight, I was in the shower, singing along to Operation Ivy, looking down at my bright red, splotchy legs and purple feet. The purple feet in the shower is a very classic symptom of POTS. It is a symptom I have had every single time I have showered for years. But tonight, it bothered me for some reason. I didn’t want any external confirmation that I was sick. It’s hard when you are literally living inside of an organic shell that reminds you at every impasse that it is deeply, fundamentally flawed. There are days when I don’t even want to look at myself.

I was accused of Munchausen’s Disease shortly before I received my diagnosis in 2012. The doctor told me that I needed to see a psychologist to be evaluated for Munchausen’s because there was nothing organically wrong with me. I called her bluff and went to the eval. An hour into the two hour appointment, the psychiatrist stopped making notes and ended the exam. “You don’t have Munchausen’s,” he said. “If you do, you’re not doing it right.” He wrote an exam note that he didn’t know what was wrong with me but that it wasn’t psychological. A few weeks later, I was diagnosed with mast cell disease.

The strangest thing about that situation is that a tiny part of me was hoping that this was all psychological. I hoped that I could receive therapy and feel my feelings and that it would make my health problems go away. It seemed easier than constantly fighting with doctors and getting an endless litany of tests that highlighted problems but never a cause. I was still undiagnosed at that point and I was tired. Very tired. And this little part of me was willing to accept that I was crazy if I could just feel better.

The result of repeatedly being accused of faking or lying or being crazy is that you start to wonder if you are. Even years later, you still feel the impact of those accusations. I was accused of inventing my disease more times than I care to remember. The result is ridiculous: II sometimes wonder if I’m really sick.

It doesn’t matter how much tangible physical evidence I have to prove this fact to myself. It’s like my mind just sort of breaks once in a while and stops accepting that I’m sick. It would be easier for me to accept that I might be crazy than that I will never get better and I will never be healthy again. The idea of forever with this body and these diseases is crushing.

I’m not crazy. This is real. I live under the burden of all the ways my body fails me. I will live with this burden every day for the rest of my life.

I am aching tonight in a way I haven’t in a while. I have bone pain in both legs and pelvic bones. All my long bones are throbbing. I have recently had blistering hives and diffuse bruising again. Last year, those were the first symptoms of vasculitis. In this moment, I don’t think I have vasculitis again, but there’s no way to know except to wait and see what else develops.

The bone pain is keeping me awake. So I’m just sitting here, wishing I were crazy.

Details of Yzzy’s bone marrow transplant

We need to talk about Yssabelle Eddlemon. Don’t worry. She’s fine.

In the eleven months since her HSCT (hematopoietic stem cell transplant, often called bone marrow transplant), Yzzy has become a bone fide legend in the mast cell community. The reason why is obvious: she has been cured of her mast cell disease, something the rest of us can only dream of. But the thing about legends is the facts sometimes get lost.

I have been contacted several times by families who want to contact her care team or the details of her treatment protocol/transplant procedure. So I would like to clarify what happened to Yzzy that necessitated a transplant and how it cured her.

Firstly, Yzzy did not have MCAS. She had SM, true, meets WHO criteria, just like in adults, SM. This is actually how our paths first crossed: she had dense colon infiltration like me, which isn’t terribly common. Yzzy had markers of progression of her SM towards a malignant form called aggressive systemic mastocytosis (ASM). She was already a very sick little girl when I met her and she got a lot sicker in the years that followed.

By February 2016, Yzzy was completely TPN dependent. She couldn’t take anything by mouth. She had mast cell reactions every day and anaphylaxis regularly. Her anaphylaxis episodes were terrifyingly fast. I’m talking seconds to administer epi. She spent a lot of time admitted to manage her anaphylaxis and complications of her SM, including central line infections. Her liver and spleen were swollen. She had very enlarged lymph nodes throughout her abdomen. Her kidney function wasn’t great. She had a ton of airway inflammation. Her GI tract was infiltrated by mast cells. She was a mess.

Around that time, Yzzy started having these bizarre, frightening episodes. She would spike a high fever (105°F and higher), get an awful headache, and become very nauseous. Eventually, the episodes also started causing significant upper GI bleeding, sometimes enough to require a transfusion. She would sometimes be unresponsive.

Patients with central lines are recommended to present to an ER if they have a fever over 100.5°F so she went to the hospital when it happened. They never had any idea what was wrong with her. There was never any indication that it was a line infection. After 3-4 days, the fevers would just resolve and she would recover. These episodes were also triggering her SM so anaphylaxis complicated these episodes further. Yzzy had a total of 22 episodes by the time anyone figured what was wrong.

In September 2016, a rheumatologist who happened to be covering the ER treated Yzzy when she had one of these episodes. For the first time, he thought he knew what was wrong with her. After a bunch of testing including bone marrow biopsies, she was diagnosed with a rare condition called hemophagocytic lymphohistiocytosis (HLH). HLH causes certain cells called macrophages to attack red blood cells, literally eating them. The red cells would break open, releasing chemicals, causing an inflammatory cascade called cytokine storm. The cytokine storm would cause the fever and the rest of the symptoms. The macrophages caused significant damage to her bone marrow.

We tried to avoid chemo when she was diagnosed. She did immunotherapy treatments for about two months. They weren’t stopping the episodes and she was decompensating fast. In November, Yzzy’s hematologist told us that he did not expect Yzzy to survive without a transplant and the odds of surviving the induction chemo and transplant were about 50% at best. But we had tried every other treatment and none of them were stopping the HLH. We had no choice. She was going to die without a transplant.

When Yzzy was diagnosed with HLH, she got a bunch of new doctors, none of whom knew much about mast cell disease. You may have read the Provider Primers series I wrote. These are primers I wrote for her new doctors. I also wrote a white paper on Yzzy, basically a manual for what to do in various situations. I highlighted important papers and sent them to her care team. And when it became obvious she was having a transplant, I aggressively advocated for them to use a specific myeloablative chemo protocol because there was a chance that could cure her SM. They agreed.

The four weeks before her transplant almost killed her. There was many times that I thought this was the end. The chemo destroyed her body. Her SM was the least of my concerns. But she survived the chemo and on January 12, she had the transplant.

Many of you know the story from this point – Yzzy’s body accepted the transplant and she improved steadily. Her SM is gone. Her HLH is gone. Her immunodeficiency is gone. She no longer needed TPN. She could eat a full, normal diet. Her port was removed. She hasn’t had anaphylaxis since the transplant. She is healthy. She is in second grade and goes to regular full day school. She takes one medication for her transplant and she will stop that med in January. She is off everything else. She is a miracle.

Yzzy got her transplant not because she had SM but because she had HLH, which would have been fatal. There was no other play. It was this or death. She would not have been eligible for transplant based upon SM alone. There are a few pilot programs for transplant in patients with ASM or MCL. They all require patients to have exhausted all other treatment options and to have terminal disease staging.

People who receive their transplants FOR their ASM or MCL do not do well. Currently, there are a few patients alive after four years, but they are very sick. The other patients have all died.  However, SM patients who get transplants for another disease sometimes do pretty well. This is the group Yzzy is in.

Keep in mind that Yzzy’s SM was not secondary to her HLH. That’s not why transplant cured her SM. SM is always a primary disorder. HLH is also a primary disorder. She would have gotten SM or HLH even if she had not had the other one. The reason the transplant cured her SM is because the chemo killed off her defective bone marrow that gave rise to her defective mast cells. Because SM is inherently a bone marrow/blood disorder, if the original bone marrow is effectively killed, the SM could be cured by replacing the bone marrow with healthy bone marrow. That’s what happened with Yzzy.

Unfortunately, Yzzy’s transplant has no bearing at all on MCAS patients as there is no transplant option for MCAS. I have been contacted by two people about pediatric ASM patients who will likely need a transplant at some point. If you are in this group of people, feel free to contact me. But keep in mind that Yzzy’s team had no real training in SM aside from me educating them. We kept her at that hospital for other, more complicated reasons. So the team who managed her transplant won’t be able to help other SM patients.  

If you have any questions about Yzzy’s transplant, please let me know and I will be happy to share.

Xoxo,

 

Lisa

The use of intravenous fluids for management of mast cell disease

I get frequent consult requests from patients specifically around the use of IV fluids to treat mast cell disease. I am often asked to provide references for papers that show its use and benefit. I am not able to provide any such references because there are none. There has been no organized study for the use of intravenous fluids to manage symptoms from mast cell disease.

Despite this fact, use of intravenous fluids in mast cell disease is increasing in popularity, largely because it works, and word of effective treatments travels fast in a rare disease community. While there is no firm answer for why it helps, there is a reasonable explanation: it treats both deconditioning and POTS and many mast cell patients have one or both.  I wrote a seven part series on why exactly intravenous fluids help in these situations. I have also written in great detail about the way that mast cell disease and POTS interact.

A paper published in early 2017 reestablished the finding that use of intravenous fluids helps POTS. Treatment lengths and infusion volumes varied from person to person. Despite these variations, use of IV fluids decreased symptoms and improved quality of life for POTS patients. The link to the abstract is here.

Many mast cell mediators are vasoactive, affecting the permeability of blood vessels. This means that mast cell activation causes third spacing, the loss of fluid from the bloodstream to the tissues, where the body cannot use it. This functional dehydration can cause a lot of symptoms, not the least of which is exhaustion and difficulty standing or exercising. For obvious reasons, this will be further exacerbated in a patient that is deconditioning or who has also has POTS.

Orthostatic symptoms can be very activating to patients and managing them effectively can help significantly. I have seen IV fluids work where more traditional methods like drinking lots of fluids and consuming lots of salt, or medications like fludrocortisone have not helped. Additionally, the first line tools for managing POTS, beta blockers, are contraindicated in patients at increased risk for anaphylaxis and therefore in people with mast cell disease.

I am a fervent supporter of IV fluids (also called volume loading) in the context of mast cell disease. I have seen it stabilize patients and reduce the frequency of anaphylaxis and severe symptoms, especially orthostatic symptoms and GI symptoms.

I personally use IV fluids. If I don’t receive IV fluids at least three times a week, my orthostatic symptoms become so severe that it is difficult to stand or even move. This in turn triggers mast cell reactions. The benefits of IV fluids to my personal health are significant. Many patients report the same.

While I support the use of IV fluids in the context of mast cell disease, patients should be aware that there are infection risks associated with repeated IV access or placement of a central line. The risks are much lower for repeated IV access as central lines have a host of other risks, including blood clots, and infections have the potential to be much more serious. However, IV access can be difficult for mast cell patients. The treatment value of IV fluids should be weighed on a case by case basis and IV access on a case by case basis.

For additional reading, please visit the following posts:

Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 1

Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 2

Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 3

Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 4

Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 5

Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 6

Deconditioning, orthostatic intolerance, exercise and chronic illness: Part 7

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 12

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 31

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 32

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 75

I get asked a lot about how mast cell disease can affect common blood test results. I have broken this question up into several more manageable pieces so I can thoroughly discuss the reasons for this. The next few 107 series posts will cover how mast cell disease can affect red blood cell count; white blood cell count, including the counts of specific types of white blood cells; platelet counts; liver function tests; kidney function tests; electrolytes; clotting tests; and a few miscellaneous tests.

 

88. How does mast cell disease affect white blood cell counts?

Firstly, remember that while mast cells are technically considered white blood cells, they don’t actually live in the blood. That means that except in very severe malignant cases of aggressive systemic mastocytosis and mast cell leukemia, mast cells won’t directly contribute to white blood cell count in a blood test at all. This means that in a regular white blood cell level blood test, none of those cells are mast cells.

There are a couple of ways in which mast cell disease can cause low white blood cell counts. It can also cause low counts of certain types of white blood cells even if it doesn’t cause low white blood cell count overall.

  • Swelling of the spleen. This can happen in some forms of systemic mastocytosis, and may also happen in some patients with mast cell activation syndrome, although the reason why it happens in MCAS is not as clear. Swelling of the spleen can damage blood cells, including white blood cells, causing lower white blood cell counts. If the spleen is very stressed and working much too hard, a condition called hypersplenism, the damage to blood cells is much more pronounced. This may further lower the white blood cell count. Hypersplenism occurs in aggressive systemic mastocytosis or mast cell leukemia. It is not a feature of other forms of systemic mastocytosis and I am not aware of any cases as a result of mast cell activation syndrome.
  • Medications. Some medications for mast cell disease can cause low white blood cell count. These are not common medications, but are sometimes used, especially in patients with long term symptoms that have not responded to other medications, or where organs could potentially be damaged, like in smoldering or aggressive systemic mastocytosis, or severe mast cell activation syndrome. These include medications like cyclosporine and interferon.
  • Chemotherapy. These medications can also decrease white blood cell count. Chemotherapy is used in smoldering systemic mastocytosis, aggressive systemic mastocytosis, and mast cell leukemia. It is sometimes also used in very aggressive presentations of mast cell activation syndrome. Newer chemotherapies are more targeted and can cause fewer side effects. However, all of the chemotherapies used for mast cell disease can cause the side effect of low blood cell counts, including white blood cell count.
  • Myelofibrosis. Myelofibrosis is a myeloproliferative neoplasm that is related to systemic mastocytosis. In myelofibrosis, the bone marrow becomes filled with deposits of scar tissue so that the body cannot make blood cells correctly or in normal numbers. This can decrease white blood cell counts.
  • Excess fluid in the bloodstream (hypervolemia). In this situation, the body doesn’t actually have too few red blood cells, it just looks like it. If your body loses a lot of fluid to swelling (third spacing) and that fluid is mostly reabsorbed at once, the extra fluid in the bloodstream can make it look like there are too few red cells if they do a blood test. This can also happen if a patient receives a lot of IV fluids.

Even if the overall white blood cell count is normal, mast cell patients sometimes have low levels of certain types of white blood cells.

  • Anaphylaxis. Anaphylaxis can cause basophils to be low.
  • Allergic reactions. These can also cause basophils to be low.
  • Chronic urticaria. Chronic hives and rashes can cause basophils to be low.
  • Use of corticosteroids like prednisone elevates certain types of white blood cells while suppressing others. Lymphocytes, monocytes, eosinophils and basophils can also be low from using corticosteroids like prednisone.
  • Prolonged physical stress. Mast cell disease can cause a lot of damage to the body over time, triggering a chronic stress response. This can selectively lower the amount of lymphocytes and the eosinophils in the body.
  • Autoimmune disease. Autoimmune disease often causes one type of white blood cell to be high and another to be low. Many mast cell patients have autoimmune diseases, so while this is not directly caused by mast cell disease, it often occurs in mast cell patients. For example, rheumatoid arthritis can cause low neutrophils.

There are many more ways that mast cell disease can trigger high white blood cell counts, or high amounts of certain types of white blood cells.

  • Inflammation. Any type of chronic inflammation can cause high white blood cell counts and mast cell disease causes a lot of inflammation.
  • Medications. Use of corticosteroids especially can cause high white blood cell counts. Epinephrine and beta-2 agonists like salbutamol/albuterol, used to open the airway, can also cause high white blood cell counts.
  • Autoimmune disease. Many mast cell patients have autoimmune diseases, so while this is not directly caused by mast cell disease, it often occurs in mast cell patients.

There are several instances where mast cell disease can trigger elevated levels of certain subsets of white blood cells.

  • Swelling of the spleen. I mentioned above that spleen swelling can damage blood cells, causing their levels to be low. Paradoxically, sometimes having a swollen spleen can cause lymphocytes to be high. There are several theories about why this may occur but there is no definitive answer currently.
  • GI inflammation. Chronic inflammation in the GI tract can cause the body to overproduce monocytes. Certain types of inflammatory bowel disease, like ulcerative colitis, can cause high basophils.
  • Allergies. Allergic reactions of any kind will elevate both basophils and eosinophils.
  • Mast cell activation of eosinophils. Mast cells activate eosinophils, which activate mast cells. It is a nasty cycle that causes a lot of symptoms and can be very damaging to organs affected. It is not unusual for mast cell patients to have high numbers of circulating eosinophils. It is also not unusual for mast cell patients to have higher than expected numbers of eosinophils in biopsies, especially GI biopsies. Eosinophilic GI disease also has some overlap with mast cell disease so some patients have both.
  • Mast cell activation of basophils. Basophils are closely related to mast cells and also degranulate in response to allergic triggers and during anaphylaxis.
  • Autoimmune disease. Autoimmune disease often causes one type of white blood cell to be high and another to be low. Many mast cell patients have autoimmune diseases, so while this is not directly caused by mast cell disease, it often occurs in mast cell patients. For example, lupus can cause eosinophilia.
  • Anemia. Iron deficiency is common in mast cell disease. Iron deficiency anemia can increase basophil levels.
  • Vascular inflammation. Mast cell activation has been repeatedly linked to inflammation of blood vessels. This can elevate blood monocyte level.
  • Medication. Use of corticosteroids like prednisone directly increase neutrophil levels.
  • Proliferation of myeloid cells. Overproduction of certain types of blood cells by the bone marrow, including mast cells, can elevate basophils.
  • Obesity. Obesity has been linked many times to chronic inflammation. Mast cell disease can directly cause weight gain by causing high levels of the hormone leptin. Obesity may cause high levels of monocytes.
  • Third spacing. If a lot of fluid from the bloodstream becomes trapped in tissues (third spacing), there is less fluid in the bloodstream so it makes it look like there are too many cells. As I mentioned above, this is not really a scenario where you are making too many white blood cells, it just looks like that on a blood test.

For additional reading, please visit the following posts:

Allergic effector unit: The interactions between mast cells and eosinophils

Anemia of chronic inflammation

Effect of anemia on mast cells

Explain the tests: Complete blood cell count (CBC) – White blood cell count

Explain the tests: Complete blood cell count (CBC) – High white blood cell count

Explain the tests: Complete blood cell count (CBC) – Low white blood cell count

Mast cell disease and the spleen

MCAS: Anemia and deficiencies

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 72

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 73

Third spacing

 

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 74

I get asked a lot about how mast cell disease can affect common blood test results. I have broken this question up into several more manageable pieces so I can thoroughly discuss the reasons for this. The next few 107 series posts will cover how mast cell disease can affect red blood cell count; white blood cell count, including the counts of specific types of white blood cells; platelet counts; liver function tests; kidney function tests; electrolytes; clotting tests; and a few miscellaneous tests.

  1. How does mast cell disease affect red blood cell counts?

There are several ways in which mast cell disease can make red blood cell count lower.

  • Anemia of chronic inflammation. This is when chronic inflammation in the body affects the way the body absorbs and uses iron. It can result in iron deficiency. Iron is used to make hemoglobin, the molecule used by red blood cells to carry around oxygen to all the places in the body that need it. If there’s not enough iron to make hemoglobin, the body will not make a normal amount of red blood cells.
  • Vitamin and mineral deficiencies. Like I mentioned above, chronic inflammation can affect the way your body absorbs vitamins and minerals through the GI tract, and the way it uses vitamins and minerals that it does absorb. While iron deficiency is the most obvious example of this, deficiency of vitamin B12 or folate can also slow red cell production.
  • Swelling of the spleen. This can happen in some forms of systemic mastocytosis, and may also happen in some patients with mast cell activation syndrome, although the reason why it happens in MCAS is not as clear. Swelling of the spleen can damage blood cells, including red blood cells, causing lower red blood cell counts. If the spleen is very stressed and working much too hard, a condition called hypersplenism, the damage to blood cells is much more pronounced. This may further lower the red blood cell count. Hypersplenism occurs in aggressive systemic mastocytosis or mast cell leukemia. It is not a feature of other forms of systemic mastocytosis and I am not aware of any cases as a result of mast cell activation syndrome.
  • Medications. Some medications that are used to manage mast cell disease can cause low red blood cell count. Chemotherapies, including targeted chemotherapies like tyrosine kinase inhibitors, can cause low red blood cell count. Medications that specifically interfere with the immune system can do the same thing, including medications for autoimmune diseases like mycophenolate. Non steroidal anti-inflammatory drugs (NSAIDs) are used by some mast cell patients to decrease production of prostaglandins. They can interfere with red blood cell production in the bone marrow and also cause hemolytic anemia, when the immune system attacks red blood cells after they are made and damages them.
  • Excessive bleeding. Mast cell disease can cause excessive bleeding in several ways. Mast cells release lots of heparin, a very potent blood thinner that decreases clotting. This makes it easier for the body to bleed. It is not unusual for mast cell patients to have unusual bruising. Bleeding in the GI tract can also occur. Mast cell disease can cause ulceration, fissures, and hemorrhoids, among other things. Mast cell disease can contribute to dysregulation of the menstrual cycle, causing excessive bleeding in this way.
  • Excessive production of other types of blood cells. In very aggressive forms of systemic mastocytosis, aggressive systemic mastocytosis or mast cell leukemia, the bone marrow is making huge amounts of mast cells. As a result, the bone marrow makes fewer cells of other types, including red blood cells. Some medications can also increase production of other blood types, causing less production of red cells. Corticosteroids can do this.
  • Excess fluid in the bloodstream (hypervolemia). In this situation, the body doesn’t actually have too few red blood cells, it just looks like it. If your body loses a lot of fluid to swelling (third spacing) and that fluid is mostly reabsorbed at once, the extra fluid in the bloodstream can make it look like there are too few red cells if they do a blood test. This can also happen if a patient receives a lot of IV fluids.

There are also a couple of scenarios where mast cell disease can make the red blood cell count higher. This is much less common.

  • Chronically low oxygen. If a person is not getting enough oxygen for a long period of time, the body will make more red blood cells in an effort to compensate for the low oxygen. This could happen in mast cell patients with poor oxygenation.
  • Third spacing. If a lot of fluid from the bloodstream becomes trapped in tissues (third spacing), there is less fluid in the bloodstream so it makes it look like there are too many cells. As I mentioned above, this is not really a scenario where you are making too many red blood cells, it just looks like that on a blood test.

For additional reading, please visit the following posts:

Anemia of chronic inflammation

Effect of anemia on mast cells

Effects of estrogen and progesterone and the role of mast cells in pregnancy

Explain the tests: Complete blood cell count (CBC) – Low red cell count

Explain the tests: Complete blood cell count (CBC) – High red cell count

Explain the tests: Complete blood cell count (CBC) – Red cell indices

Gastrointestinal manifestations of SM: Part 1

Gastrointestinal manifestations of SM: Part 2

Mast cell disease and the spleen

Mast cells, heparin and bradykinin: The effects of mast cells on the kinin-kallikrein system

MCAS: Anemia and deficiencies

MCAS: Blood, bone marrow and clotting

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 3

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 12

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 19

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 20

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 45

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 72

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 73

Third spacing

Roller coaster

I got my first central line in February 2014. At that point I was at the hospital two or three times a week. Being able to manage my needs at home as much as possible was a welcome relief and so I welcomed the line.

I had a PICC line placed in my left arm about three inches above the elbow. The poor PA who placed it was terrified. She called me the day before to go over the procedure in pinched, staccato notes. She casually mentioned that she was considering doing the placement in the ER since they would have a crash cart nearby. The infusion nurses had regaled her with stories of my reactions and anaphylaxis history. I laughed and then felt bad about it. “Whatever you need to feel comfortable is fine,” I told her. It is the first time I remember a provider being scared of my disease.

The second time I remember a provider being scared of my disease was the following day when a home infusion nurse came to change my dressing. She was much more frightened than the PA had been. She made me hold my epipen while she did the dressing change. “You’re doing fine,” I reassured her, hoping that was true. Comforting trained professionals while they treat me is a special sort of pain, like pulling out a thorn. It shouldn’t have happened in the first place and half the pain is disbelief and feeling ridiculous.

That PICC saw a lot of action. But before I was a mast cell patient, I was an infectious diseases microbiologist, and I wanted that PICC line out. PICC lines are basically a straight shot to infections. I managed to keep my line sterile and my site immaculate and lobbied hard for a port to be placed. In September 2014, the PICC was removed from my arm and a port was placed in my chest.

I wanted a port for a few reasons, but the big reason was because I could manage it completely independently. I expend a lot of energy trying to stay infection free and a big part of that is staying out of the hospital. The PICC line allowed me to give myself meds and fluids but I needed someone else to change the dressing and it was harder to troubleshoot outside of a hospital. With a port, I could access and deaccess the line, change the dressing, and give meds on my own. That meant I only needed to have supplies and myself, and I could bring those just about anywhere. I could also shower more easily, take a real bath, and go swimming with the port. It was an all around win.

In the three years and three weeks that I had it, that port lived quite a life. I took it to my parents’ house and on long walks with my dogs. I took it to work on countless days. I took it to the beach and water parks. I took it to my pool on hot summer evenings. I took it to the hospital for appointments and surgeries and procedures. I took it to my niece’s First Communion. I took it wedding dress shopping with my sister. I took it on many long weekends in New Hampshire. I took it apple picking and trick or treating. I took it Christmas shopping. I took it to my girls’ weekend in Maine. I took it to the Garden of the Gods in Colorado Springs. I took it to California. I took it to Disney World. I took it all over Florida. I took it to the blue waters of Tulum and underground rivers and the Mayan Ruins at Coba. I took it on the Star Ferry and on long walks around Hong Kong. I took it to the Forbidden City and the Great Wall of China.

It wasn’t completely without issues. I had some trouble with my port and a line infection abroad is on my top ten list of things I never want to experience.  But the horrors my mind produced in response to my fear never materialized. I am fortunate to be able to say that my panic attacks have been the scariest things I have experienced with a central line.

My port was my security blanket. It still is. I could travel to all these places because I wasn’t terrified of anaphylaxis. I still took extreme measures to prevent anaphylaxis but I wasn’t paralyzed in fear by the thought of traveling. I had the meds and IV access and could keep myself stable. In an emergency, I could get myself to a decent hospital, and from there, I could get home.

I started having trouble with my port in May. My port had a small reservoir and was difficult to access unless you always put the needle through my skin in the same spot. After years of having a needle continuously penetrating the skin in the exact same spot, scar tissue formed around this spot and the site became indurated. Eventually, the skin at that site became ulcerated and millimeters thin. It was almost to the point that you could see the port through the hole. I developed a literal hole in my chest over my port.

I had a huge amount of anxiety over it. My port allowed me to control so many things about my life and I was really scared about losing that control. I spent a few months trying to get the hole to heal. It did not heal. It ulcerated and got larger.

I had the port replaced at the end of September. They were able to put the new port in the same pocket as the old one with the new line ending in the same blood vessel. They did a fantastic job on the ulcer repair and removed some additional dead tissue. All in all, it went as well possible.

It is staggering to think about how much has changed between the placement of my first central line and my most recent one. It never occurred to me that I would need a permanent central line. I figured I would have it to for a few months and I would get better and it would be removed. It obviously didn’t play out like that.

There have been some very low points. I decompensated a lot. I ended up needing more GI surgery. I transitioned to doing IV meds daily. I needed continuous IV fluids for a while. I’ve had a bunch of procedures, scopes, etc. I lost the ability to eat all solids. I needed several months of medical leave from work.

I’ve had plenty of high points, too. And in the past year, I’ve had a lot of them. Most things considered, I have steadily improved since the spring of this year. I am back to work. I am actively working on MastAttack again. I have been able to adjust my meds a lot as some symptoms have improved. I can eat again, and not just eat, but eat real food. It still takes a lot of work to keep this body functioning but it’s not as much of a constant struggle.

I no longer feel like I’m constantly flirting with anaphylaxis. I haven’t used an epipen in several months. It’s a reality for me that I will never be free of the risk of anaphylaxis. I still keep epipens out in every space in my home. I still carry around four epipens and IV rescue meds at all times. But I’m not waiting for it anymore. I’m not always afraid. That in itself has been unbelievably liberating.

I am working on decreasing my IV meds and IV fluids very, very slowly. My long term goal is to get to a place where I do IV fluids overnight three nights a week and only access as needed for IV rescue meds or procedures. It will likely take years to get to this point, even if I continue to improve. It has been hard because these things have kept me safe for a long time. I think I will never be free of them entirely and that’s okay.

But my relationship with my port is changing. I am very slowly trying to transition to a person who uses my line but who is not completely dependent upon it for safely. Part of this is training my body. Part of this is training my mind to stop catastrophizing and to let go of my anxiety. It’s not obvious yet which part which be the hardest.

I get Xolair every four weeks at my immunologist’s office at the hospital. Last week, his nurse and I were chatting about my recent port placement and decreasing my IV meds. I shared that the idea of not having a continuously accessed port and therefore ready IV access was scary. “Imagine that,” she said as she gave me my injections. “Imagine just accessing a few nights a week. Imagine if you could have it removed!”

I can’t though. I can’t imagine it. I think I will always have a port and will always need some IV support. But the idea that I could only need it to be accessed for three nights a week is mind blowing. A year ago I was passing out if I stood up, my stomach was newly paralyzed, and I couldn’t eat at all. Now I’m back to work full time, working on the courses for MastAttack U, planning international travel for next year and eating chicken pot pies for dinner. Bananas.

As I get more comfortable with this process, the fear is still fresh, but there is now an edge of exhilaration. Like an amazing ride from a high height. A long drop with a safe landing.

A roller coaster.

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 71

85. What is the difference between an anaphylactic reaction and an anaphylactoid reaction?

  • Anaphylaxis is an old term. It has been defined in a number of ways over time.
  • From the 1980s-mid 2000s, that term was typically reserved for cases involving an IgE allergy. If a patient had a life threatening, multisystem allergic reaction from an IgE trigger, that event was called anaphylaxis. Similar reactions that were from a trigger that was not an IgE allergy were called anaphylactoid, which literally means “like anaphylaxis.”
  • In the mid 2003, the World Allergy Organization recommended that the term “anaphylactoid” be abanded. Whereas anaphylaxis had been mostly used to describe IgE reactions, their recommendation was to call all of these events anaphylaxis regardless of whether or not they were from IgE triggers. Anaphylaxis from an IgE trigger was called “immunologic anaphylaxis” and anaphylaxis from a non-IgE trigger was called “non-immunologic anaphylaxis.”
  • These terms are still used, but many providers just use the term anaphylaxis without specifying further.
  • Unfortunately, the recommendation to stop using “anaphylactoid” has not been fully adopted, despite repeated statements from professional organizations supporting it.
  • Part of why the definition of anaphylaxis was amended to be inclusive of all triggers was to encourage more effective treatment. A significant number of providers felt that anaphylactoid described a reaction that was self limiting or that was not serious enough to require epinephrine, despite the fact that treatment should have been the same as for anaphylaxis from any trigger. Moving away from the term “anaphylactoid” helped to confer the understanding that all forms of anaphylaxis were serious, that they required adequate treatment, and that there should not be an expectation that the reaction would resolve without treatment.
  • Mast cell patients ask me often if their “anaphylaxis from mast cell disease” is really anaphylaxis or if it is an anaphylactoid reaction. Per the World Allergy Organization, the term “anaphylactoid” is obsolete, so these patients experience anaphylaxis. But some providers do not recognize this as anaphylaxis.
  • The most important thing to impress upon providers is that regardless of the terminology they prefer, mast cell reactions that are anaphylactic/anaphylactoid still require the same, aggressive treatment. Calling a reaction anaphylactoid does not make it less serious or negate the requirement for advanced treatment.
  • This is an excellent resource for anyone wanting to learn more about the treatment recommendations for anaphylaxis. There are notes about the discussion on use of “anaphylactic” and “anaphylactoid” on page 344.

 

For additional reading, please visit the following posts:

The definition of anaphylaxis

Anaphylaxis and mast cell reactions

 

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 73

86. What is the role of the spleen in systemic mastocytosis? (Part Two)

  • The spleen is basically a big filter for the blood. In the previous post, I mentioned one of its functions: to catch certain types of infections in the blood that your immune system has a hard time fighting in other ways.  It does some other things, too. The spleen stores red blood cells and platelets so that your body has a backup supply in case of hemorrhage or trauma.
  • The spleen also looks for something else when it filters the blood: damaged or abnormal blood cells. Damaged or abnormal blood cells get caught in the spleen so that they don’t continue to circulate in the blood. The spleen then breaks down those bad cells and uses materials from them to help make new healthy cells.
  • If there are lots of abnormal cells, then the spleen gets swollen because it is holding many more cells than usual. This is why the spleen swells in diseases where the body has abnormal cells in the blood stream. How much the spleen swells is directly proportional to the amount of abnormal cells in the blood.
  • For example, in acute leukemias, there are tons of abnormal cells circulating in the bloodstream. The spleen catches as many as they can. Because there are a lot, the spleen swells very quickly. In chronic leukemias, there are still abnormal cells, but they are produced at a much slower rate over time. This means that the spleen has more time to break down the broken blood cells it catches before it catches more of them. In these scenarios, the spleen swells more slowly over a longer period of time.
  • You can apply this understanding directly to mastocytosis. Patients with indolent systemic mastocytosis have fewer mast cells than those with smoldering or aggressive systemic mastocytosis, or mast cell leukemia. The patients with indolent systemic mastocytosis make some abnormal mast cells. The spleen will catch the ones it sees and remove them from the bloodstream. But mast cells don’t live in the blood and they only pass through the bloodstream for a short time. So the spleen has time to break down some mast cells before it catches more.
  • When a patient with indolent systemic mastocytosis starts to produce higher numbers of mast cells, that’s when you see the spleen starting to swell. That’s why spleen swelling is a B finding for systemic mastocytosis – it is an indicator that the body is making more mast cells than before, and could be headed toward a more aggressive form.
  • The number getting filtered out by the spleen increases so the spleen swells. The more abnormal mast cells produced, the more the spleen swells.
  • Additionally, when the bone marrow is making lots of aberrant mast cells, they are introduced into the blood stream in much larger numbers than normal. This means that they are more likely to get caught in the spleen than in a person with indolent systemic mastocytosis.
  • In smoldering systemic mastocytosis, the body makes more mast cells than in indolent systemic mastocytosis, so it’s more common for the spleen to swell. In aggressive systemic mastocytosis, the bone marrow is producing a lot of mast cells and many of them are caught in the spleen over a short period of time. In mast cell leukemia, even more are made and caught, so the spleen becomes clogged up very quickly.
  • When the spleen is swollen from catching bad mast cells, the swelling causes it to break or damage other, healthy blood cells, too. This happens because the swelling of the spleen pinches the pathway for cells through the spleen so the other cells have to squeeze through, causing them to break. This is why patients with more advanced forms of systemic mastocytosis like smoldering systemic mastocytosis, aggressive systemic mastocytosis, and mast cell leukemia are more likely to have low blood cell counts than people with indolent systemic mastocytosis.
  • In addition to the risk of low blood cell counts, the swelling and dysfunction of the spleen can also contribute to portal hypertension. This is when there is high pressure in the blood vessel system that connects the GI tract, the pancreas, the spleen and the liver.
  • Portal hypertension is also a C finding for aggressive systemic mastocytosis. This means that a person who has this because of mastocytosis receives a diagnosis of aggressive systemic mastocytosis.
  • Portal hypertension can affect liver function and can cause fluid that should be in the liver to end up in the general abdominal space, a condition called ascites.
  • Splenic swelling often causes no symptoms. It is unusual for it to cause pain in the general area of the spleen. Left shoulder pain sometimes occurs if the spleen is very swollen.
  • The general rule of thumb is that the spleen has to be twice its normal size for it to be felt on a physical exam. The exact amount of swelling is usually measured by an ultrasound.
  • Spleen swelling does not usually require treatment. Generally, unless there is hypersplenism, it is not treated.
  • The treatment for hypersplenism is splenectomy, surgical removal of the spleen. The spleen is removed mainly for two reasons: to decrease portal hypertension, thereby reducing stress on the liver; and to prevent the spleen from rupturing, which can cause fatal hemorrhage.

This question was answered in two parts. Please see the previous post for more information.

For additional reading, please visit the following posts:

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)

The Provider Primer Series: Natural history of SM-AHD, MCL and MCS

Mast cell disease and the spleen