Skip to content

smoldering systemic mastocytosis

Bone involvement in SM (ISM, SSM, SM-AHNMD, ASM): Literature review (part 2)

There have been several publications on bone involvement in SM. Importantly, not all of these papers define SM the same way. Some define it as ISM, while others define it as ISM, SSM, SM-AHNMD and ASM. (I personally am sloppy about not specifying when I mean ISM versus when I mean any all the systemic proliferative groups. So if it’s not clear, please ask.) Another thing to be aware of is that the terminology for osteosclerosis is not consistent. It is sometimes referred to as osteocondensation (this is primarily a term used by French researchers). I have done some digging recently on this and cannot find any indication that these two terms do not represent the same phenomenon (increased deposition of bone), so if anyone knows of any papers or sources that say they are different, please let me know.

A 2010 paper (Barete 2010) defines SM as ISM, SSM, SM-AHNMD and ASM. They divided the study into two groups: Variant 1 (non-aggressive), ISM and SSM; and Variant 2 (aggressive), SM-AHNMD and ASM.

Overall (ISM, SSM, SM-AHNMD and ASM), 49% of patients had some form of bone involvement. Osteoporosis was most common, occurring in 31% of patients. 17% had a vertebral fracture. 8% had osteosclerosis. 4% had a mixed pattern, so more than one type of bone involvement. 5% had osteopenia with a previous fracture (this could be unrelated to mast cell disease, like an arm broken in a fall). Only one patient had a focal area of osteolysis with spontaneous fracture.

56% of variant 2 (aggressive) group had osteoporosis, compared to 23% of variant 1. However, when they excluded people who were classified as variant 2 based upon bone involvement, the association dropped to 17% variant 2 with osteoporosis and 23% of variant 1. Osteoporosis associated with vertebral fracture affected 48% variant 1 and 8% variant 2. Osteoporosis was also found to be associated with fewer GI symptoms, with 39% variant 1 having GI issues while 65% variant 2 did.

A total of six patients (out of a total group of 75) had osteosclerosis. One ISM, one SSM, three ASM and one SM-AHNMD patient had osteosclerosis. This translates to two in the variant 1 group and four in the variant 2 group, so twice as many in the aggressive group (ASM, SM-AHNMD) as in the non-aggressive group. 66% of patients in variant 2 with osteosclerosis had a blood count abnormality (anemia, thrombocytopenia, eosinophilia) vs 12% in variant 1. 83% of patients in variant 2 with osteosclerosis had received cytoreductive therapy vs 33% in variant 1, and higher tryptase level was associated with osteosclerosis. Overall, this means that osteosclerosis was associated with a more severe disease presentation (a patient with ISM and osteosclerosis may have a blood count abnormality), but this study does not provide any insight as to whether osteosclerosis is a marker associated with progression toward ASM or SM-AHNMD.

A 2011 paper (Guillaume 2011) assessed bone involvement in a group of CM and SM patients. In this study, SM included ISM, ASM and SM-AHNMD. 45 patients were included.  They found one patient with osteolysis, eight with osteocondensation (a form of osteosclerosis), four with a mixed pattern and three with fractures. They found no association between the presence of radiologic lesions (lesions detected by imaging techniques) and severity (here classified as non-aggressive: ISM and CM, and advanced: ASM and SM-AHNMD).

This study also looked at chemical markers used for bone remodeling. They found that markers associated with both bone resorption and bone formation were higher in mastocytosis patients than in the general population. The higher levels were thought to represent increased number of osteoblasts and osteoclasts due to the increase in mast cells. Osteoprotegerin was also higher in mastocytosis patients. This is a protein released by osteoblasts that regulates the activity of osteoclasts. Levels of C-telopeptide were significantly higher in patients with SM-AHNMD or ASM than in patients with ISM or CM.

A 2011 paper (Rossini 2011) investigated the relationship between tryptase and bone turnover markers (bone specific alkaline phosphatase, C-telopeptide, osteocalcin) in ISM patients. A total of 82 patients were enrolled in the study. 36% had bone involvement. 20% had osteoporosis, with 18.7% found in the spine and 2.5% at the hip. Five patients had a history of bone breaks outside of the spine. 27 patients had vertebral fractures. Two patients had osteosclerotic features and also had particularly high tryptase levels. Another study previously reported that high tryptase can be associated with increased bone density (Kushnir-Sukhov 2006).

This study had a large amount of ISM patients without skin lesions (55%). A very important finding of this particular study was that ISM patients without skin lesions are at the same risk for osteoporosis. As lesions are often one of the more identifiable markers of mastocytosis, the author raises the very valid point that osteoporosis may in some people be the only sign of latent ISM.

This paper reported that “diffuse osteosclerosis associated with SM is not a[n] “osteopetrosis-like osteopathy”, as previously reported, but a skeletal disease characterized by increased bone turnover.” This is important, as they have previously been equated for lack of distinction. The author further notes that the “pathophysiology of SM-related osteosclerosis remains obscure, although it is known that MCs can exert a direct stimulatory effect on osteoblast proliferation, recruitment, and activity.”

This study found that bone mineral density and serum tryptase did not correlate with the serum markers of bone turnover. However, it did find that ISM patients with osteosclerosis had higher tryptase and bone turnover markers (bone specific alkaline phosphatase and C-telopeptides of type I collagen) than ISM patients with other types of bone involvement.

(Literature review continued tomorrow)

References:

Maurizio Rossini, et al. Bone mineral density, bone turnover markers and fractures in patients with indolent systemic mastocytosis. Bone 49 (2011) 880–885.

Theoharides TC, Boucher W, Spear K. Serum interleukin-6 reflects disease severity and osteoporosis in mastocytosis patients. Int Arch Allergy Immunol 2002;128:344–50.

Dobigny C, Saffar JL. H1 and H2 histamine receptors modulate osteoclastic resorption by different pathways: evidence obtained by using receptor antagonists in a rat synchronized resorption model. J Cell Physiol. 1997 Oct;173(1):10-8.

Kushnir-Sukhov NM, Brittain E, Reynolds JC, Akin C, Metcalfe DD. Elevated tryptase levels are associated with greater bone density in a cohort of patients with mastocytosis. Int Arch Allergy Immunol. 2006;139(3):265-70. Epub 2006 Jan 30.

Barete S, Assous N, de Gennes C, Granpeix C, Feger F, Palmerini F, et al. Systemic mastocytosis and bone involvement in a cohort of 75 patients. Ann Rheum Dis 2010;69:1838–41.

Nicolas Guillaume, et al. Bone Complications of Mastocytosis: A Link between Clinical and Biological Characteristics. The American Journal of Medicine (2013) 126, 75.e1-75.e7

van der Veer, W. van der Goot, J. G. R. de Monchy, H. C. Kluin-Nelemans & J. J. van Doormaal. High prevalence of fractures and osteoporosis in patients with indolent systemic mastocytosis. Allergy 67 (2012) 431–438.

Bone involvement in SM (ISM, SSM, SM-AHNMD, ASM): Clarifications (part 1)

One of the more nuanced aspects of mastocytosis is how it affects bone structure. Previously, it was thought that only patients with systemic mastocytosis experienced bone pain, and that bone pain was always a function of increased proliferation in the marrow. This no longer appears to be the case. Some patients with non-proliferative mast cell disease have been found to experience bone pain, likely as a result of mediator activity on the outside of the bone. In particular, histamine can be very irritating to the cells on the outside of the bone.

Generally speaking, bone cells work like this:

Osteoblasts make new bone. Osteoclasts eat away (resorb) at bone so that new bone can be put in that place. When these processes aren’t balanced, you develop bone conditions.

In osteosclerosis, your body is making new bone faster than it can resorbed. In osteoporosis, your body is resorbing bone faster than new bone is made.   In osteolysis, your body is also resorbing bone faster than new bone is made, but to a much larger extent than usually seen in osteoporosis. Both osteoporosis and osteolysis can cause pathologic fractures, meaning that because your bone is weak from osteoporosis or osteolysis, the bone breaks.

Bone involvement in systemic mastocytosis is important because the type of bone involvement present can be used to stage the disease. Specifically, certain types of bone involvement can cause a person with indolent or smouldering systemic mastocytosis to be reclassified as aggressive systemic mastocytosis (ASM). Osteolysis (in which bone is eaten away) is a marker for ASM. If you have ISM or SSM and are found to have a large osteolytic lesion, you now have ASM.

More confusing is the relationship of osteoporosis to ASM. If you have ISM or SSM AND you have osteoporosis AND you have multiple fractures due to the severity of the osteoporosis (known as pathologic fractures), you are classified as having ASM. There is some debate in the community as to whether or not osteoporosis with successive pathologic fractures is a true indication of ASM. However, it is currently included in the diagnostic guidelines, and so if you meet this criteria while also having ISM or SSM, then you are classified as having ASM.

But I want to be very clear about something: the osteoporosis is NOT the factor that classifies someone as having ASM. It is the MULTIPLE FRACTURES as a result of bone disease that classifies someone as having ASM. So if you have SSM and are diagnosed with osteoporosis and have a single vertebral fracture as a result of osteoporosis, you are NOT classified as having ASM. It is easier I think to consider this “bone involvement” criterion of ASM as osteolysis or multiple fractures due to bone deterioration.

SM is well known as a possible risk factor for osteoporosis. This has been attributed by different groups to either infiltration of bone by mast cells or release of mediators, including histamine, heparin and tryptase. IL-6 levels were also shown to be proportional to disease severity and osteoporosis in mastocytosis patients (Theoharides 2002). Histamine regulates bone resorption by osteoclasts via H1 and H2 receptors (Dobigny 1997). In bone biopsies of osteoporotic patients, the number of osteoclasts is sometimes elevated and sometimes normal.

Up next: literature review of studies on bone involvement in ISM, SSM, SM-AHNMD, and ASM.

 

References:

Maurizio Rossini, et al. Bone mineral density, bone turnover markers and fractures in patients with indolent systemic mastocytosis. Bone 49 (2011) 880–885.

Theoharides TC, Boucher W, Spear K. Serum interleukin-6 reflects disease severity and osteoporosis in mastocytosis patients. Int Arch Allergy Immunol 2002;128: 344–50.

Dobigny C, Saffar JL. H1 and H2 histamine receptors modulate osteoclastic resorption by different pathways: evidence obtained by using receptor antagonists in a rat synchronized resorption model. J Cell Physiol. 1997 Oct;173(1):10-8.

Barete S, Assous N, de Gennes C, Granpeix C, Feger F, Palmerini F, et al. Systemic mastocytosis and bone involvement in a cohort of 75 patients. Ann Rheum Dis 2010;69:1838–41.

Nicolas Guillaume, et al. Bone Complications of Mastocytosis: A Link between Clinical and Biological Characteristics. The American Journal of Medicine (2013) 126, 75.e1-75.e7

van der Veer, W. van der Goot, J. G. R. de Monchy, H. C. Kluin-Nelemans & J. J. van Doormaal. High prevalence of fractures and osteoporosis in patients with indolent systemic mastocytosis. Allergy 67 (2012) 431–438.

Mast cell mutations: TET2 and mutation profiles of aggressive subtypes

TET2 (Tet methylcytosine dioxygenase 2) is found to be mutated in 20.8-29% of SM patients. Of note, dozens of mutations have been identified in this gene, including missense, nonsense, frameshift and deletion mutations. These mutations cause formation of a defective and less active TET2 enzyme. TET2 is located at chromosome 4q24 and mutations at this location are associated in both MPN and MDS conditions.

TET2 is involved in DNA methylation and demethylation, although the exact nature of this involvement is not clear. When a methyl group is added to a cytosine at a specific place in front of a gene, the gene is turned off and is not expressed. This is called “methylation.” TET2 adds a hydroxyl group to 5-methylcytosine, but it is not well understood if this turns the gene off. TET2 may also be involved in demethylating DNA, or removing those specific methyl groups. It has been shown to be involved with DNA demethylation during bone development.

One study looked at the mutational profiles of patients with various forms of SM, including ISM, SSM, SM-AHNMD, ASM and MCL, all of whom were positive for CKIT D816V mutation. 15/39 had a TET2 mutation. None of those patients had ISM or SSM. Of those with an aggressive form and a TET2 mutation, 67% had more than one TET2 mutation.

In this study, 24/27 patients with advanced SM (SM-AHNMD, ASM, MCL) had mutations beyond the D816V mutation. 5/5 SM-AHNMD patients and 19/22 ASM or MCL patients had multiple mutations (CKIT and something else.) In contrast, only 3/12 ISM or SSM patients had additional mutations. In advanced SM, 78% had at least 3 mutations, and 41% had at least 5.

These mutational profiles have clear implications clinically. 96% patients with major blood abnormalities (anemia <10 g/dL and/or thrombocytopenia < 100 x 10e9/L in addition to monocytosis > 1 x 10e9/L and/or eosinophilia >10%) had at least one additional molecular mutation regardless of SM subtype.

Advanced SM patients in this study all had one of the following multiple mutation profiles: 26% KIT-TET2-SRSF2, 18% KIT-SRSF2-RUNX1, 13% KIT-TET2-CBL, 10% KIT-SRSF2-ASXL1 10%, and 10% KIT-TET2-ASXL1. Patients with advanced SM (and therefore multiple mutations) were also found to be significantly older (68 years of age on average) than those with just the CKIT mutation (48 years of age on average.)

Having a TET2 mutation seems to predispose myeloid cells to become neoplastic later in life. It is important to distinguish that the TET2 mutation seems to “allow” this transformation rather than causing it. In mice who don’t have the TET2 gene and thus don’t have the TET2 enzyme, stem and progenitor cells have trouble maintaining balance and spontaneously become neoplastic later in life. In TET2 deficient cells, mast cells with D816V mutation show increase in proliferation and survival as opposed to those without with normal TET2 levels. Presence of TET2 in addition to the presence of CKIT D816V mutation is associated with more aggressive forms of SM (including ASM, MCL and SM-AHNMD.)

 

References:

Damaj, G., Joris, M., Chandersris, O., Hanssens, K., Soucie, E., Canioni, D., et al., 2014.ASXL1 but not TET2 Mutations Adversely Impact Overall Survival of PatientsSuffering Systemic Mastocytosis with Associated Clonal Hematologic Non-Mast-Cell Diseases. PLoS ONE 9 (1), e85362.

Schwaab, J., Schnittger, S., Sotlar, K., Walz, C., Fabarius, A., Pfirrmann, M., et al., 2013.Comprehensive mutational profiling in advanced systemic mastocytosis. Blood122 (October (14)), 2460–2466.

Soucie, E., Hanssens, K., Mercher, T., Georgin-Lavialle, S., Damaj, G., Livideanu, C.,et al., 2012. In aggressive forms of mastocytosis. TET2 loss cooperates with c-KITD816V to transform mast cells. Blood 120 (December (24)), 4846–4849.

Soucie, E., Brenet, F., Dubreuil, P. Molecular basis of mast cell disease. Molecular Immunology 63 (2015) 55-60.

Progression of mast cell diseases: Part 1

Among mast cell patients, we generally assume that a designation of SM means indolent systemic mastocytosis (ISM.) However, in research papers, this term can mean ISM, SSM, ASM or MCL. Advanced SM usually means ASM or MCL. These terms generate a lot of confusion in the patient population. When reading a paper, abbreviations are usually defined on the first page or within the introduction. It is important to check on what the researchers are using the term SM for.

As an example, let’s look at this really alarming quote to someone who thinks SM means ISM:

“The life expectancy of SM patients was shorter relative to age- and sex-matched controls. As initially observed by Travis et al, survival decreased rapidly after diagnosis: to 60% at 3 years, with a subsequent slower decline to 50% at 5 years. Beyond 5 years, the slope of the survival curve was similar to that of the control population. This observation confirms that the deaths in SM patients within the first 3 (and up to 5) years after diagnosis.” (Lim 2009)

In this paper, SM meant ISM, SM-AHNMD, SSM, ASM and MCL. When you average those survival rates together, you get a sharp decline in survival for the first five years. After that, it returns to normal, because most of the ASM and MCL patients in that study died by that time.

 

I get asked A LOT about whether or not ISM is progressive. I see a lot of people describe it as progressive. In medicine, progression usually means moving from one diagnostic category to a more serious one (like ISM to SSM.) However, a lot of patients use this term to mean a worsening of symptoms or disability while staying in the same diagnostic category (like ISM with mild daily symptoms to ISM with severe daily symptoms). Those are two different things. I’m going to answer both.

 

What is the life expectancy with ISM?

It’s normal.

“Patients with ISM have a favorable prognosis. These patients may suffer from mediator-release symptoms, but do not suffer from significant organopathy caused by MC infiltration.” (Valent, 2003)

In a study of 159 patients, 2.2% ± 1.3% died within five years of diagnosis, and 11% ± 5.9% died within twenty five years of diagnosis. “The majority of deaths in this ISM cohort were unrelated to mastocytosis.” (Pardanini 2013)

In a study of 342 patients, ISM was the largest subgroup with 159 patients.  They were significantly younger at presentation (median age 49 years.) “Overall median survival was not significantly different than that of the age and gender matched control population. Advanced age was the primary determinant of inferior survival.” (Pardanini 2013)

 

Will my ISM symptoms get worse with time?

There is really no way to know. In some people, they are stable, while in others, they fluctuate. However, mediator release symptoms (degranulation symptoms) are known to be more common in ISM than ASM and MCL.

“ISM patients can be highly symptomatic; in one study, 70% reported at least some degree of functional limitation, of which 17% reported severe limitation.” (Pardanini 2013)

“The type and severity of symptoms were independent of disease classification (CM vs SM), KITD816V status, and serum tryptase level.” (Pardanini 2013)

 

If my ISM symptoms get worse, does that mean I am progressing to a more severe category, like SSM, ASM or MCL?

No.

“One important aspect in this regard is that mediator-related symptoms per se are not indicative of aggressive mastocytosis unless accompanied by C-findings.” (Valent 2003)

“Moreover, organomegaly per se is not necessarily indicative of aggressive SM.” (Valent 2003)

“In fact, in a group of patients with SM, organomegaly is recorded over many years without impairment of organ function or development of C-findings.” (Valent 2003)

“The type and severity of symptoms were independent of disease classification (CM vs SM), KITD816V status, and serum tryptase level.” (Pardanini 2013)

 

References:

Pardanini, Animesh. How I treat patients with indolent and smoldering mastocytosis (rare conditions but difficult to manage.) 2013; Blood: 121 (16).

Pardanini, Animesh. Systemic mastocytosis in adults: 2013 update on diagnosis, risk stratification, and management. 2013; American Journal of Hematology: 88 (7).

Pardanini, Animesh. Prognostically relevant breakdown of 123 patients with systemic mastocytosis associated with other myeloid malignancies. 2009; Blood: 114 (18).

Lim, Ken-Hong, et al. Systemic mastocytosis in 342 consecutive adults: survival studies and prognostic factors. 2009; Blood: 113 (23).

Valent, Peter, et al. How I treat patients with advanced systemic mastocytosis. 2010; Blood: 116 (26).

Matito, Almudena, et al. Serum tryptase monitoring in indolent systemic mastocytosis: association with disease features and patient outcome. 2013; PLOS One.

Sperr, Wolfgang. Diagnosis, progression patterns and prognostication in mastocytosis. 2012; Expert Review of Hematology: 5 (3): 261-274.

Valent, Peter, et al. Aggressive systemic mastocytosis and related mast cell disorders: current treatment options and proposed response criteria. 2003; Leuk Res 27 (7): 635-41.

Hauswirth, Alexander, et al. Response to therapy with interferon alpha-2b and prednisolone in aggressive systemic mastocytosis: report of five cases and review of the literature. 2004; Leuk Res 28 (3): 249-257.

Language matters: Mast cell terminology

This is by no means a comprehensive list – just a review on definitions of some commonly confused terms.

Acute: This word gets used a lot when people mean “severe.” Acute does not mean severe. It means sudden onset or having a short, limited course. For example, stage III anaphylaxis is an acute complication of mast cell disease. Its symptoms come on suddenly, require immediate treatment, and once treated, resolves. (I am not referring to the after effects of anaphylaxis – just the emergency and treatment.) In a medical sense, acute is the opposite of chronic.

Chronic: Long term, occurs all the time, is expected to occur forever. I have mast cell disease and am chronically ill. I have acute anaphylactic emergencies.

Progressive: Getting worse or will get worse. This term gets used loosely by patients to mean that their symptoms get worse. Medically speaking, this generally refers to progression of disease from one stage to the next, like SM to ASM. SM and MCAS are not inherently progressive diseases. People who have progressed from SM to SSM or ASM have progressive disease.

 

Systemic symptoms: Any symptoms that do not involve the skin. Can be present in cutaneous mastocytosis or MCAS. So diarrhea is a systemic symptom. Tachycardia is a systemic symptom. Systemic symptoms do not mean you have SM.

Systemic mastocytosis: the diagnosis you receive if you meet either the major criterion listed subsequently and at least 1 of the 4 minor criteria, or at least 3 minor criteria if the major criterion is not met:

Major criterion

Multifocal, dense infiltrates of mast cells (≥15 mast cells in aggregates) detected in sections of bone marrow and/or other extracutaneous organ(s)

Minor criteria

In biopsy sections of bone marrow or other extracutaneous organs, >25% of the mast cells in the infiltrate are spindle-shaped or have atypical morphology, or, of all mast cells in bone marrow aspirate smears, >25% are immature or atypical

Detection of an activating point mutation at codon 816 of KIT in bone marrow, blood, or other extracutaneous organ

Mast cells in bone marrow, blood, or other extracutaneous organ express CD2 and/or CD25 in addition to normal mast cell markers

Serum total tryptase persistently exceeds 20 ng/mL (unless there is an associated clonal myeloid disorder, in which case this parameter is not valid)

The diagnosis of SM is unrelated to the symptoms the patient experiences. Some SM patients have no symptoms. Some have severe symptoms.

Systemic symptoms ≠ systemic disease (SM)

 

Aggressive symptoms: Frequent or severe symptoms, which may be life threatening.

Aggressive disease: Doctors sometimes use this term to mean a quick progression of symptoms or rapid change in quality of life.

Aggressive systemic mastocytosis: A diagnosis that indicates multiple organ infiltration and damage by mast cells. Lifespan is significantly shortened in many patients. It is diagnosed by already meeting the criteria for SM and then also having at least one C finding, listed here:

Bone marrow dysfunction manifested by one or more cytopenia (ANC < 1.0 × 109/l, Hb < 10 g/dl, or platelets < 100 × 109/l), but no frank non-mast cell haematopoietic malignancy

Palpable hepatomegaly with impairment of liver function, ascites and/or portal hypertension

Skeletal involvement with large-sized osteolysis and/or pathological fract

Palpable splenomegaly with hypersplenism

Malabsorption with weight loss due to GI mast cell infiltrates

Aggressive symptoms and aggressive disease ≠ aggressive systemic mastocytosis (ASM)

 

Smoldering systemic mastocytosis (SSM): A progression from SM with markers that indicate likelihood of developing ASM. Diagnosed if two or more of the following B findings are present with previous diagnosis of SM:

Bone marrow biopsy showing > 30% infiltration by mast cells (focal, dense aggregates) and/or

serum total tryptase level > 200 ng/ml

 

Signs of dysplasia or myeloproliferaion in non-mast cell lineage, but insufficient criteria

for definitive diagnosis of a haematopoietic neoplasm by WHO, with normal or only slightly

abnormal blood counts

 

Hepatomegaly without impairment of liver function, and/or palpable splenomegaly without

hypersplenism, and/or palpable or visceral lymphadenopathy