Skip to content

bone marrow biopsy

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 55

69. What routine monitoring should mast cell patients receive?

There are not yet routine testing recommendations for MCAS patients, but there are some for mastocytosis patients. Many doctors use the mastocytosis recommendations to monitor their MCAS patients in the absence of specific MCAS guidelines.

Mastocytosis patients should monitor tryptase level annually. In mastocytosis patients, tryptase level is often a good marker for how many mast cells are in the body (although this is not always true.) If a patient’s tryptase is increasing over time, the provider will need to check other things to see if their disease is moving to a more serious disease category.

DEXA scans measure bone density. Osteoporosis is a common complication of systemic mastocytosis. Patients should receive regular osteoporosis screening, even if they are young.

Mastocytosis patients usually receive routine bloodwork annually that includes a complete blood count (CBC), which counts the amount of blood cells a person has; and a metabolic panel, which looks at how well the liver and kidneys are working.

Repeat biopsies are usually only done if the result will change treatment in some way. Most patients with systemic mastocytosis are diagnosed based upon bone marrow biopsies. These don’t usually need to be repeated unless tryptase level increases sharply or there are unusual results in routine blood count testing. Increasing tryptase can indicate that the body is making more mast cells much faster, which is sometimes linked to a more serious disease category. Unusual blood cell counts can indicate not just too many abnormal mast cells, but also other bone marrow conditions sometimes seen in mast cell patients, like myelofibrosis and essential thrombocythemia.

Patients with cutaneous mastocytosis are diagnosed by skin biopsy. There is not usually a need to repeat a skin biopsy for patients with CM.

Patients with systemic mastocytosis are usually diagnosed by bone marrow biopsy but can also be diagnosed as a result of a positive biopsy in any organ that is not the skin. A person can be diagnosed with SM via a GI biopsy.

GI biopsies are a little different than bone marrow biopsies in that there are sometimes reasons to repeat them. GI biopsies may be repeated to see if the general inflammation in the GI tract is improved or worsened. The provider may also be interested in whether or not the amount of mast cells in the GI tract has decreased. The result of GI biopsies often change treatment options so it is not unusual to repeat them. However, unlike bone marrow biopsies, repeated GI biopsies do not tell the provider if the mastocytosis is moving toward a more serious disease category or not.

MCAS patients are diagnosed based upon positive tests for molecules that indicate mast cells are overly active, like n-methylhistamine, and D2- or 9a,11b-F2 prostaglandins. Once the patient is diagnosed, there’s not a clear rationale for repeating these tests, although some providers do for their own information. Some providers like to check prostaglandin levels to see if treatment to stop mast cells from making prostaglandins (like use of aspirin or other NSAIDs) is helping.

However, it is important to understand that the level of mast cell mediators is not associated with symptoms. A person who has a normal level of 9a,11b-F2 prostaglandin may have the same symptoms as a person above the normal level, who may have the same symptoms as a person who has three times the normal level. For this reason, many providers consider these mediator tests to be less about the numerical value of the test and more about whether it’s normal or high, period.

For more detailed reading, please visit the following post:
The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 5
The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 6
The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 7
The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 8
The Provider Primer Series: Diagnostic criteria of systemic mastocytosis and all sub variants
The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)
The Provider Primer Series: Mediator testing
The Provider Primer Series: Mast cell activation syndrome (MCAS)

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 43

52. Is it true that it can take up to six bone marrow biopsies to diagnose systemic mastocytosis?

Sort of. This has become sort of an urban legend in the mast cell community. I am partly to blame for this as I have offered this information up several times without explaining it, which is lazy on my part.

Systemic mastocytosis is diagnosed by biopsy. While a positive biopsy in any organ that’s not skin can be used to diagnose SM, bone marrow biopsies are overwhelmingly what is used to diagnose.

In 2004, a paper was published that discussed how well bone marrow biopsies worked for diagnosing SM in a group of 23 patients. These patients had bilateral bone marrow biopsies taken, so each patient had one on each side. In 19 of those patients, both of the biopsies showed mastocytosis. In 4 of those patients, only one of their two biopsies was positive. 4/23 is 17%, which is roughly 1/6. Based upon this figure, it means that theoretically, in a patient who has SM, they could have five negative biopsies before getting a positive biopsy.

It’s important to two things in mind when you think about this 1/6 thing. Firstly, this is a very small patient group. Things that you see in a small group don’t always translate to what really happens in larger groups. Another thing is that the criteria they used in 2004 to diagnose SM are not the same as the criteria we use now. It’s possible that with changes in diagnostic criteria that this 1/6 number is no longer accurate.

In reality, I have never met a person who needed six bone marrow biopsies to get a positive biopsy for SM. But I do know a few who needed two or three. It’s not impossible that it could take six to get a positive biopsy but it’s unlikely.

However, it’s also important to realize that every expert acknowledges that you can have a negative biopsy while having SM. The reason for this is that you can’t tell by looking whether or not a biopsy site will give you a positive biopsy for SM. You have to just hope that the mast cells are clustered where they stick the needle. Mast cells don’t cluster evenly throughout your bone marrow when you have SM. If you get a biopsy site where the mast cells didn’t happen to cluster, you are out of luck. For this reason, some doctors advocate getting bilateral bone marrow biopsies (two at once) to increase the chances of catching a positive biopsy.

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, part 8

I have answered the 107 questions I have been asked most in the last four years. No jargon. No terminology. Just answers.

14. Are there any special instructions for the tests to diagnose mast cell disease?
• There are a lot of tests used to diagnose mast cell disease. There are certainly people who slip through the cracks with the current diagnostic criteria.
• Remember this as you read the following: DO NOT, UNDER ANY CIRCUMSTANCES, EVER, DISCONTINUE MEDICATION FOR TESTING WITHOUT EXPLICIT INSTRUCTIONS TO DO FROM A DOCTOR THAT UNDERSTANDS MAST CELL DISEASE. Stopping medications for mast cell disease can be very dangerous.
• The biopsy forms the centerpiece of diagnosis of both cutaneous and systemic forms of mastocytosis.
You can increase your chance of positive skin biopsy by choosing either a permanent lesion or an area of skin that is frequently reactive.
• For internal organs, including bone marrow, you can’t always tell where to biopsy just by looking. The area may look normal but show inflammation when viewed with a microscope.
• If patients do not need to take daily corticosteroids because they do not make their own (adrenal insufficiency or Addison’s disease), they are often recommended to not use corticosteroids (prednisone or similar) for five days before a bone marrow biopsy. Taking corticosteroids can tell your body to make a lot of extra white blood cells which can make it harder to give a correct diagnosis.
• The CKIT D816V mutation test is often done on a blood sample. It is much more accurate when a bone marrow biopsy is tested because there are many more mast cells. Mast cells do not live in the blood so the blood test is less accurate. If the test is positive in blood, we assume that the patient is truly positive. If the test is negative in blood, we are not sure if the patient is truly negative.
• Serum tryptase is a test with a lot of caveats. It is influenced heavily by timing and patient factors like weight. Many people with mast cell disease have normal serum tryptase. It is good for tracking progression of disease in patients with systemic mastocytosis.
• About 85% of patients with systemic mastocytosis have a baseline tryptase value over 20 ng/mL. Patients with monoclonal mast cell activation syndrome may also have baseline tryptase value over 20 ng/mL. For these patients, they should have two different tests from days when they are not especially reactive, or have had anaphylaxis.
• For patients with mast cell activation syndrome, we are often looking for an increase in tryptase during a reaction or anaphylactic event. In these patients, experts recommend having blood drawn 15 minutes to 4 hours after onset of the event.
• Another sample should be drawn 1-2 days later so that you have a sample to compare with the tryptase level during the event. Many experts accept a level increased by 20% plus 2 ng/mL above the baseline to be indicative of mast cell activation. (I made a typo on this that said 20% to 2 – sorry!)
• As we have previously discussed, many mast cell mediators should be kept cold because they break down quickly. 24 hour urines for n-methylhistamine, prostaglandin D2, 9a,11b prostaglandin F2, and leukotriene E4 should be kept cold.
Performing a 24 hour urine when you are having a reaction event can increase the likelihood of mediator release.
COX inhibitors will interfere with prostaglandin production. Some patients stop these meds before giving 24 hour urines for prostaglandin testing. DO NOT STOP MEDS WITHOUT BEING ADVISED BY AN EXPERIENCED MAST CELL PROVIDER.
Lipoxygenase inhibitors will interfere with leukotriene production. Some patients stop these meds before giving 24 hour urines for leukotriene testing. DO NOT STOP MEDS WITHOUT BEING ADVISED BY AN EXPERIENCED MAST CELL PROVIDER.
• Heparin is very heat sensitive. Plasma heparin must be kept cold. One study reported that a tourniquet on the upper arm for ten minutes before drawing the sample increased the change of detecting mast cell activation with this test.
• Chromogranin A is influenced by many other conditions and medications. It is important that those other conditions be ruled out. This may require lengthy body scans and other tests. Chromogranin A is influenced by proton pump inhibitors, meds that are commonly taken by mast cell patients. DO NOT STOP MEDS WITHOUT BEING ADVISED BY AN EXPERIENCED MAST CELL PROVIDER.

For more detailed reading, please visit these posts:

The Provider Primer Series: Mediator testing

Patient questions: Everything you wanted to know about tryptase

The Provider Primer Series: Mast cell activation syndrome (MCAS)

The Provider Primer Series: Cutaneous Mastocytosis/ Mastocytosis in the Skin

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (SM-AHD, MCL, MCS)

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, part 7

I have answered the 107 questions I have been asked most in the last four years. No jargon. No terminology. Just answers.

 

13. What do these biopsy tests look for?
• They look for the shape, quantity, and distribution of mast cells.
• They also look for specific proteins on the outside of mast cells and tissue damage around mast cells.
• Systemic mastocytosis and cutaneous mastocytosis are generally diagnosed by biopsy. With very, very few exceptions, you cannot meet the criteria for systemic mastocytosis without having a positive biopsy. Sometimes people with monoclonal mast cell activation syndrome are diagnosed by having a biopsy that looks like a very early phase of systemic mastocytosis.
• The diagnostic criteria for mast cell activation syndrome are hotly contested. Most doctors do not use biopsies to diagnose MCAS because there are not uniform criteria. Some doctors feel that more than 20 mast cells in a field when you look through the microscope is a sign of MCAS.
• Cutaneous mastocytosis is having too many broken mast cells in your skin. For this condition, they are looking for either 20 mast cells to be present in the microscope field (hpf) when looking at the skin, or for there to be at least one cluster of at least fifteen mast cells.
• Clustering is a very important feature of mastocytosis. When mast cells bunch together in a cluster, it is easier to damage the tissue. They are essentially punching holes in the tissue by clustering.
• Systemic mastocytosis is having too many broken mast cells made by the bone marrow. Systemic mastocytosis is usually diagnosed by a positive bone marrow biopsy. However, sometimes people are diagnosed by biopsies of other organs. Skin biopsy is NOT enough to diagnose systemic mastocytosis.
• For systemic mastocytosis, there are three key things they are looking for in the biopsy.
• They are looking for at least one cluster of at least fifteen mast cells.
• They are looking for some of the mast cells to be shaped like spindles, sort of smushed at the ends and round in the middle. You see this shape a lot when cells are trying to stick together in a cluster.
• They are looking for special proteins that are only found when a patient has systemic mastocytosis or monoclonal mast cell activation syndrome. They are called CD25 and CD2. These are like flags that the mast cells fly to tell us they are broken. One of them, CD25, actually helps mast cells cluster together.
• In biopsies, they usually also look for the protein CD117. This is a normal flag for mast cells to fly and just allows us to know that we are looking at mast cells.

For more detailed reading, please visit these posts:

The Provider Primer Series: Management of mast cell mediator symptoms and release

The Provider Primer Series: Mast cell activation syndrome (MCAS)

The Provider Primer Series: Cutaneous Mastocytosis/ Mastocytosis in the Skin

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (SM-AHD, MCL, MCS)

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 5

I have answered the 107 questions I have been asked most in the last four years. No jargon. No terminology. Just answers.

10. How is mast cell disease diagnosed?
• There are several tests you need to definitively determine if you have mast cell disease and what kind you have.
The most well known test for mast cell disease is serum tryptase. This is a blood test. This is the test doctors are most likely to have heard of. Doctors may think that you can’t have mast cell disease if tryptase is normal. This is not true.
• If a patient has a tryptase over 20 ng/mL, the next step is usually a bone marrow biopsy. A tryptase over 20 ng/mL increases the likelihood that a patient has systemic mastocytosis. SM is most commonly confirmed by a bone marrow biopsy.
• You need a special stain in order to see mast cells in any biopsy. Stains that show mast cells include Giemsa Wright stain and toluidine blue. Your doctor should specify these stains.
• Several tests must be run on the bone marrow biopsy to look for clonal mast cell disease. Remember that in clonal diseases, the body makes too many broken cells.
• The shape of the mast cells in the biopsy is very important. If the mast cells are not shaped right, this can be a sign of mast cell disease.
• The number of mast cells grouped together in the body is also important. If 15 or more mast cells are all stuck together, this is called a cluster. When mast cells are clustered together like this, they can punch holes in the tissue and damage it a lot. This prevents the tissue from working right.
• Immunohistochemistry (IHC) is a way to find specific proteins that allow us to know what cells we are looking at in the biopsy. Often, these proteins are on the outside of the cells. Think of these are flags that a cell can wave. IHC can look for the specific flags a cell is waving so that we know for sure which cell is which. For mast cell disease, they want to look for CD117, CD25, and CD2. The CD117 flag is flown normally by all mast cells. CD25 and CD2 are special flags flown by mast cells if you have clonal mast cell disease.
• PCR is a way to look for genetic mutations. They need to look for a mutation in the mast cells in the bone marrow. The mutation is found at a specific place in the CKIT gene. This mutation is found in 80-90% of patients with systemic mastocytosis. It may also be found if patients have monoclonal mast cell activation syndrome.
• If a patient does not have a tryptase over 20 ng/mL, a bone marrow biopsy is often not ordered. There are other tests that can indicate mast cell disease.
• Urine collected over 24 hours can be tested for specific chemicals. In the case of mast cell disease, they are looking for chemicals that can be high if you have mast cell disease. These chemicals have very long, complicated names. I will explain in a later post exactly what they are and what they do. The most common ones are called n-methylhistamine, prostaglandin D2, 9a,11b-prostaglandin F2, and leukotriene E4. Anti-heparin Xa and chromogranin A are sometimes tested. They are much less reliable as indicators of mast cell disease than the others mentioned here.
• If a patient is suspected to have cutaneous mastocytosis, a skin biopsy is needed to confirm. As with bone marrow biopsies, your doctor should specify that they need to use toluidine blue or Giemsa Wright stain to be sure they see the mast cells.
• The skin biopsy should also receive the other tests I described above for bone marrow biopsy: the counting of mast cells and looking at the shape; looking for CD117, CD2, and CD25; and looking for the same mutation with PCR.
11. What kind of doctor diagnoses mast cell disease? Can any doctor order these tests?
Doctors from all different specialties may diagnose and manage mast cell disease. It depends upon the individual provider and where you are located. It could be a dermatologist, allergist, hematologist, pulmonologist, gastroenterologist, or another specialist.
• The serum tryptase is the easier to order and the most well known test. Many labs can run this test.
• The 24 hour urine tests are specialized. Some of them are run in only a few places and samples are usually shipped there. Most often, these samples are run at the Mayo Clinic. Many outpatient labs have no way to run those tests. You will need to speak with your doctor about how to get these tests. It is often easiest if they are run by a hospital lab but again, this depends upon the hospital.
• The PCR genetic test for this specific gene is run in more places than the urine tests but is still not very common. Again, it is often easiest if they are run by a hospital lab.
• A bone marrow biopsy is usually ordered by a hematologist or by another specialist that works commonly with hematologists. They are usually performed by hematology providers. Some testing can usually be performed in house (the counting of the cells and looking at the shape) while others may need to be sent out (the IHC testing).
• A skin biopsy is usually ordered by a dermatologist. Some testing can usually be performed in house (the counting of the cells and looking at the shape) while others may need to be sent out (the IHC testing).
For more detailed reading, please visit these posts:

The Provider Primer Series: Management of mast cell mediator symptoms and release

The Provider Primer Series: Mast cell activation syndrome (MCAS)

The Provider Primer Series: Cutaneous Mastocytosis/ Mastocytosis in the Skin

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (ISM, SSM, ASM)

The Provider Primer Series: Diagnosis and natural history of systemic mastocytosis (SM-AHD, MCL, MCS)

The difference between CD117+ and CKIT+

Hey, everyone –

I received a request to clarify the difference between being CD117+ and CKIT+.

CD117 is a receptor on the outside of mast cells. It is normal and all mast cells are CD117+. This is how we identify them as mast cells. If you have a bone marrow biopsy done and it says no CD117 is found, this is not because there are no mast cells there. It is because the test for CD117 isn’t sensitive enough to find those few mast cells. This is called the limit of detection (LoD).

When there is more of something present, it is easier to find it. Say I am in a field and there are five tennis balls scattered. If I walk around for a long time, maybe I will find three tennis balls. But if there is only one tennis ball to be found, I may not find it. I have less of a chance of finding it because there aren’t as many so it’s harder.

Being CD117+ is NORMAL for mast cells. It just means that it’s a mast cell. But mast cells that are constantly activated have more CD117+ on their outside membranes. Think of it like the tennis balls – if there are five CD117 receptors on a mast cell, it’s easier for the test to find one. If there is only one, the test might miss it.

CD117 is also called the CKIT receptor. It is a receptor that gives mast cells the signal to stay alive and encourage more mast cells to mature. If you get a biopsy report back and it is CD117+, then it will say CD117. The reason the report doesn’t call it positive for CKIT is historical and has to do with the fact that it was identified first as CD117 and later called CKIT because of similarities with other proteins of similar names.

When mast cell patients say CKIT+, it is a misnomer. It means that they are positive for the D816V mutation in CKIT, which is a marker for systemic mastocytosis. So being CD117+ and CKIT+ are not the same. CD117+ just means mast cell. CKIT+ (D816V) means neoplastic mast cell.

The D816V mutation changes the shape of the CD117 (CKIT) receptor and tells the mast cell to stay alive and encourage other mast cells to mature even when it shouldn’t.

Being CD117+ does not affect medication profile for mast cell disease at all. It just means it’s a mast cell. Some drugs are approved only for CKIT- patients (negative for D816V).

CD117/CKIT is a tyrosine kinase, which is a kind of protein. There are hundreds of known tyrosine kinases, CD117/CKIT is just one. Tyrosine kinase inhibitors can affect cells by blocking the signal to stay alive. Tyrosine kinases do not take up tyrosine from the environment, it has literally nothing to do with tyrosine metabolism at all.

If there any questions, ask in the comments.

MCAS: Blood, bone marrow and clotting

One of the reasons MCAS is so difficult to diagnose is because it often has no effect on routine blood work.  Mast cells leave the bone marrow early in their lives, circulate in the blood stream very briefly, and then live in peripheral tissues for life spans of several months to about three years.  The reason many MCAS patients have no obvious hematologic abnormalities is that mediator release in these peripheral tissues usually doesn’t affect generation of blood cells or the blood cells already circulating. 
Hematologic issues are more commonly found in proliferative disease, like SM.  Still, one study found that in SM patients, random bone marrow biopsies missed the diagnosis 1/6 of the time.  For patients in whom SM is suspected, a second BMB can be helpful and bilateral biopsies are being ordered more frequently. 
MCAS patients very rarely have increased numbers of mast cells, spindled cells, CD2/25 receptor expression or the CKIT D816V mutation.  On examination of marrow, when irregularities are found, they are off a mild “myeloproliferative/myelodysplastic” nature, which sometimes leads to a diagnosis of MDS.  These patients do not respond to MDS treatments.
When serum tryptase is less than twice the upper limit of normal, BMB is not recommended due to how infrequently abnormalities are found.  Even during reactions, MCAS patients usually have normal tryptase values.  In recent years, a tryptase of 20% + 2 ng/ml above baseline has become regarded as evidence of activation, but this is not universally accepted.
MCAS patients often have normal blood counts, white blood cell differentials and bone marrow findings.  But there is now a growing population of MCAS patients with evident abnormalities.  Elevation of monocytes is the most common irregularity, followed by elevation of eosinophils, and then elevation of basophils.  High reactive lymphocytes are often identified in these patients on manual differential.  White blood counts can be high or low, often for no clear reason, and usually mild, but sometimes severe.  Likewise, platelets can be high or low, which sometimes garners patients a diagnosis of essential thrombocytosis or immune thrombocytopenia. 
Overproduction of red blood cells can occur to excessive release by mast cells or other cells of mediators stimulating production.  Sometimes patients are originally diagnosed with and treated for polycythemia vera, but do not improve. 
Poor clotting and easy bruising is found in a lot of MCAS patients due to activation that releases heparin.  By itself, it does not typically require treatment.  The bleeding is often localized, such as excessive bleeding from a surgical site but clotting correctly elsewhere.  Antihistamines typically help, with protamine being reserved for severe cases and transexamic acid and aminocaproic acid being reserved for the most severe.
Thromboembolism, formation of a clot in one vessel that breaks away and impedes blood flow in another vessel, is not rare in MCAS patients, even those with normal coagulation labs.  Some patients have low or high PT or PTT values.  Antiphospholipid syndrome should be excluded. 
Heparin released by mast cells activates anti-thrombin III and factor XII, which activate the rest of the intrinsic clotting cascade.  Heparin also stimulates the formation of bradykinin, which in turn causes vascular dilation and loss of fluid volume from the vessels into the tissues.  This is notable as a non-histamine route that can cause angioedema, low blood pressure and fainting in MCAS patients.

References:
Afrin, Lawrence B. Presentation, diagnosis and management of mast cell activation syndrome.  2013.  Mast cells.
Sur R. Cavender D. Malaviya R. Different approaches to study mast cell functions. Int. Immunopharmacol. 2007 May; 7(5):555-567.
Butterfield JH, Li C-Y. Bone marrow biopsies for the diagnosis of systemic mastocytosis: is one biopsy sufficient? Am. J. Clin. Pathol. 2004; 121:264-267.

Bone marrow biopsy

Most people with suspected systemic mastocytosis receive a bone marrow biopsy as part of their diagnostic testing.  Sometimes people will have confirmed mast cell infiltration in another organ, in which case a bone marrow biopsy may not be needed. 
I know that once I needed a bone marrow biopsy, I sort of felt like my illness had hit the big time.  Like it was time to be really concerned.  My family and friends were really concerned because bone marrow biopsies are used to diagnosis serious diseases.  It is okay to be scared.  But the procedure was not even close to the worst I’ve had, and the pain was manageable. 
In the middle of long bones, there is a squishy center called bone marrow.  Your bone marrow produces most of your body’s blood cells.  The marrow is essentially organized tissue that holds the immature blood cells.
Red bone marrow is active and produces red blood cells, platelets, neutrophils, basophils, eosinophils, monocytes/macrophages, T cells, B cells and mast cells.  Yellow bone marrow mostly contains fat.  Red bone marrow is found in flat bones, like the sternum (breast bone) and the pelvic girdle (upper hip bones.)  In children, the femur (thigh bone) also contains red marrow.
A bone marrow biopsy removes some of the solid tissue from the red marrow to look for abnormal cells.  It uses a long, hollow needle.   Using this needle, a solid piece of bone marrow is removed.  This is called a core. 
A bone marrow aspiration, which removes some liquid from the red marrow, is often done at the same time.  It uses a syringe to remove a little bit of the liquid. 
When you arrive, you may be given IV sedation.  You usually have to request this in advance.  Generally, this is “twilight sedation,” in which you are awake but given medications to relax and manage the pain. 
If they are taking samples from the back of your pelvic crest, you lay on your stomach.  You receive a local anesthetic, typically lidocaine.  It will burn as the drug numbs the area.  (I’ve always found it really ironic that an anesthetic burns.)  A small incision is made in the skin at the biopsy site. 
A hollow needle is then pushed through the bone and into the marrow.  A syringe is attached to the needle and the person doing the procedure pulls back on the plunger to draw liquid into the needle.  This is called the aspirate.  When the aspirate is removed, it changes the pressure inside the bone and causes some pain.  Sometimes no aspirate is found.  This is called a “dry tap.”  If this occurs, another site is biopsied. 
After the aspiration, the biopsy is performed.  This uses a larger hollow needle that is pushed through the bone and into the solid marrow.  The entire procedure (aspiration and biopsy) usually takes about 30 minutes.
After the samples are taken, a sterile dressing is applied to the site with pressure to stop bleeding.  Once the bleeding has stopped, a new dressing is taped into place.  It is important to keep this dressing dry for 24 hours, as getting it wet can increase the risk of infection.  After 24 hours, you can shower or swim as usual. 
The biopsy site will be sore for at least a few days.  Avoid strenuous activity for a few days.  If you develop an (unusual) fever, severe pain, swelling, redness or drainage from the site, or uncontrolled bleeding, contact your health care provider.  This can indicate an infection.
People ask a lot if the biopsy hurts.  With twilight sedation, it hurt, but not badly, and not for long.  I was pretty sore for about a week after, with a throbbing pain that went down my right leg.  I didn’t have any problems otherwise.    
For people with mast cell disease, there are additional steps and precautions that need to be taken.  When I had mine, I premedicated 12 hours before the procedure, and was then given IV medications an hour before the procedure.  12 hours before, I took 50 mg prednisone, 150 mg ranitidine, 10 mg montelukast and 50 mg diphenhydramine.  One hour before, I received 120 mg methylprednisolone, 40 mg famotidine, and 50 mg diphenhydramine. 
Care must be taken with pain medication for people with mast cell disease.  I received midazolam and fentanyl.  I was advised by my mast cell specialist that I needed to receive twilight sedation for this procedure, as pain is a mast cell trigger, and could cause anaphylaxis for me. 
As always, make sure the medical team is aware of your disease and the procedure if you react/anaphylax/shock.  Always have your Epipens with you.  Never assume that they will have epinephrine in the room.
It is not unusual for multiple biopsies to be needed for diagnosis with SM.  The reason for this is that where the mast cells will cluster in the bone marrow is unpredictable.  Unless you put the needle in the right place, it will be negative.  If you meet three of the minor criteria for SM, you do not need a positive bone marrow biopsy for diagnosis; however, a positive bone marrow biopsy is the most common method of diagnosis.
After the samples are taken, they will be tested for several things.  The samples will be inspected under a microscope to see what types of cells are present and in what quantity, including how many mast cells are present.  There should be some mast cells present, but too many is problematic.  They will also see if they shaped normally, or if they are “spindle shaped,” in which they have pointy edges coming off them (like a star.)  They will use special stains in order to see different cell types, including Giemsa stain for mast cells.
Mast cells in the samples will also be tested for some receptors on their surface, CD117 (encoded by the CKIT gene), CD2 and CD25.  This is done by using special antibodies to these receptors that stick to the receptors, and can then be detected by the operator.  They will also be tested for the D816V mutation in the CKIT gene.  This is done by a testing method called PCR. 
The whole process is not super pleasant, but this test provides answers that are impossible to get otherwise.  And I think you’ll all agree with me that having answers is better than not knowing.