Skip to content

Lesser known mast cell mediators (Part 1)

I have posted at length about the roles of histamine and serotonin. Here are some less well known mast cell mediators. I will be doing in depth posts on the more relevant substances in the near future.

Monocyte chemotactic protein 1 (MCP-1), also known as chemokine ligand 2 (CCL2), draws other white blood cells, including memory T cells, monocytes and dendritic cells, to the site of injury or infection. It has important functions in neuroinflammation as seen in experimental autoimmune encephalitis, traumatic brain injuries, epilepsy and Alzheimer’s disease; and in diseases with pathologic infiltration of monocytes, like rheumatoid arthritis.

Chemokine ligand 3 (CCP7) recruits monocytes and regulates macrophage activity. It is known to interact with MMP2.

MMP2 (matrix metalloproteinase 2) is involved in tissue remodeling, reproduction and fetal development. It degrades type IV collagen. It has regulatory effects on the menstrual cycle and has been tied to growth of new blood vessels.

Interleukin 8 (IL-8), also known as neutrophil chemotactic factor (NCF), draws other white cells, mostly neutrophils, to a site of infection. It can activate multiple cells types, including mast cells, and promotes degranulation. It has been linked to bronchiolitis, psoriasis and inflammation.

MCP-4 (CCL13) attracts T lymphocytes, eosinophils, monocytes and basophils to an area of inflammation. Improper regulation can exacerbate asthma symptoms. Mast cells can release MCP-1 when stimulated by TNF-a and IL-1.

CCL5 (RANTES) attracts T cells, eosinophils and basophils. When IL-2 and interferon-γ are present, CCL5 activates natural killer cells and causes proliferation of the same. It is also important in bone metabolism.

CCL11 (eotaxin-1) specifically recruits eosinophils and is heavily involved in allergic inflammatory responses.

CPA3 (carboxypeptidase A3) digests proteins. It is released complexed with heparin proteoglycan along with chymase and tryptase.

Both interferon α (IFN- α) and interferon β (IFN-β) are made in response to viral infections. Their activities are regulated by IFN- γ. IFN- γ also draws white cells to the site of inflammation. Failure to properly regulate interferon levels can cause autoimmune disease. Interferons are so called because of their ability to “interfere” with viral infection. They are responsible for “flu type symptoms,” such as fever, muscle aches and lethargy.

All mediators listed here are produced by mast cells and stored in granules until degranulation.