The Provider Primers Series: Medications that impact mast cell degranulation and anaphylaxis

A number of medications can induce mast cell degranulation and histamine release. Other medications increase the risk of anaphylaxis and can increase the severity of anaphylaxis.

Medication reaction profile is very individual and not all mast cell patients react to the medications listed below. Additionally, there may be a need for some mast cell patients to take  medications listed below if the benefit outweighs the risk.

Medications that are reported to induce mast cell degranulation and histamine release
Alcohol[i] Amphoterecin B[ii] Aspirin[i] Atracurium[iii]
Caine anesthetics (esters)[iv] Codeine[v] Colistin (polymyxin E)[vi] Dextran[iii]
Dextromethorphan[iii] Gelatine[iii] Iodine based radiographic dye[vii] Meperidine[viii]
Miconazole[ix] Mivacurium[iii] Morphine[iv] Nefopam[iii]
NSAIDs[x] Phentolamine[xi] Polymyxin B[v] Reserpine[xii]
Rocuronium[iv] Succinylcholine[iv][xiii] Thiopental[iv] Tolazoline[v]
Vancomycin[xiv] (especially when given intravenously)

 

Patients on beta blockers are more likely to experience anaphylaxis and more likely for that anaphylaxis to be severe and treatment resistant. Beta blockers also impede treatment of anaphylaxis by interfering with the action of epinephrine[xvi]. Patients at risk for anaphylaxis who are on beta blockers should get a glucagon pen to use prior to epinephrine[xv].

Beta adrenergic blockers[xvi] (Note: List is not exhaustive)
Acebutolol Atenolol Betaxolol Bisoprolol
Bucindolol Butaxamine Cartelol Carvedilol
Celiprolol Esmolol Metoprolol Nadolol
Nebivolol Oxprenolol Penbutolol Pindolol
Propranolol Sotalol Timolol

 

Alpha blockers impede treatment of anaphylaxis by interfering with the action of epinephrine[xvii].

Alpha-1 adrenergic blockers[xvii] (Note: List is not exhaustive)
Alfuzosin Amitryptiline Amoxapine Atiprosin
Carvedilol Chlorpromazine Clomipramine Clozapine
Dapiprazole Dihydroergotamine Doxazosin Doxepin
Ergotamine Etoperidone Fluphenazine Hydroxyzine
Imipramine Labetalol Loxapine Mianserin
Nefazodone Olanzapine Phentolamine Prazosin
Quetiapine Risperidone Silodosin Tamsulosin
Thimipramine Thioridazine Trazodone

 

Alpha-2 adrenergic blockers[xvii] (Note: List is not exhaustive)
Buspirone Chlorpromazine Clozapine Esmirtazapine
Fluophenazine Idazoxan Loxapine Lurasidone
Mianserin Mirtazapine Olanzapine Phentolamine
Risperidone Thioridazine Yohimbe

Patients on angiotensin-converting enzyme (ACE) inhibitors are also more likely to experience anaphylaxis and more likely for that anaphylaxis to be severe and treatment resistant. The exact reason for this is unclear but ACE inhibitors impede appropriate bradykinin metabolism which may contribute to anaphylaxis[xvi].

Angiotensin converting enzyme (ACE) inhibitors[xvi] (Note: List is not exhaustive)
Benazopril Captopril Enalapril Fosinopril
Lisinopril Moexipril Perindopril Quinapril
Ramipril Trandolopril

Special notes:

Aspirin use in mast cell patients to suppress prostaglandin production is becoming increasingly common[xviii]. In some situations, other NSAIDs are also used.

Fentanyl, sufentanil, remifentanil and alfentanil are the preferred opioids for mast cell patientsiv. Hydromorphone releases minimal histamine and is also used in mast cell patients.[xix]

References:

[i] Valent P. (2014). Risk factors and management of severe life-threatening anaphylaxis in patients with clonal mast cell disorders. Clinical & Experimental Allergy, 44, 914-920.

[ii] Lange M, et al. (2012). Mastocytosis in children and adults: clinical disease heterogeneity. Arch Med Sci, 8(3), 533-541.

[iii] Dewachter P, et al. (2014). Perioperative management of patients with mastocytosis. Anesthesiology, 120, 753-759.

[iv] Eggleston ST, Lush LW. (1996). Understanding allergic reactions to local anesthetics. Ann Pharmacother, 30(7-8), 851-857.

[v] Brockow K, Bonadonna P. (2012). Drug allergy in mast cell disease. Curr Opin Allergy Clin Immunol, 12, 354-360.

[vi] Kwa A, et al. (2014). Polymyxin B: similarities to and differences from colistin (polymyxin E). Expert Review of Anti-infective Therapy, 5(5), 811-821.

[vii] Kun T, Jakubowski L. (2012). Pol J Radiol, 77(3), 19-24.

[viii] Blunk JA, et al. (2004). Opioid-induced mast cell activation and vascular responses is not mediated by mu-opioid receptors: an in vivo microdialysis study in human skin. Anesth Analq, 98(2), 364-370.

[ix] Toyoguchi T, et al. (2000). Histamine release induced by antimicrobial agents and effects of antimicrobial agents on vancomycin-induced histamine release from rat peritoneal mast cells.  Pharm Pharmacol, 52(3), 327-331.

[x] Grosman N. (2007). Comparison of the influence of NSAIDs with different COX-selectivity on histamine release from mast cells isolated from naïve and sensitized rats. International Immunopharmacology, 7(4), 532-540.

[xi] Powell JR, Shamel LB. (1979). Interaction of imidazoline alpha-adrenergic receptor antagonists with histamine receptors. J Cardiovasc Pharmacol, 1(6), 633-640.

[xii] Muroi N, et al. (1991). Effect of reserpine on histamine metabolism in the muse brain. J Pharmacol Exp Ther, 256(3), 967-972.

[xiii] Sadleir PH, et al. (2013). Anaphylaxis to neuromuscular blocking drugs : incidence and cross-reactivity in Western Australia from 2002 to 2011. Br J Anaesth, 110(6), 981-987.

[xiv] Sanchez-Borges M, et al. (2013). Hypersensitivity reactions to non beta-lactam antimicrobial agents, a statement of the WAO special committee on drug allergy. World Allergy Organization Journal, 6(18), doi:10.1186/1939-4551-6-18

[xv] Thomas M, Crawford I. (2005). Glucagon infusion in refractory anaphylactic shock in patients on beta-blockers. Emerg Med J, 22(4), 272-273.

[xvi] Lieberman P, Simons FER. (2015). Anaphylaxis and cardiovascular disease: therapeutic dilemmas. Clinical & Experimental Allergy, 45, 1288-1295.

[xvii] Higuchi H, et al.(2014). Hemodynamic changes by drug interaction of adrenaline with chlorpromazine. Anesth Prog, 61(4), 150-154.

[xviii] Cardet JC, et al. (2013). Immunology and clinical manifestations of non-clonal mast cell activation syndrome. Curr Allergy Asthma Rep, 13(1), 10-18.

[xix] Guedes AG, et al. (2007). Comparison of plasma histamine levels after intravenous administration of hydromorphone and morphine in dogs. J Vet Pharmacol Ther, 30(6), 516-522.

IgE-independent anaphylaxis; or, I haven’t been this excited on a Tuesday night in a long time

Mast cell patients are intimately familiar with the phenomenon of testing positive for allergies to things you know aren’t problems and negative for things that almost killed you.  If you ask any health care provider what the allergy antibody is, they will say it is IgE.  And for the most part, that is true.  But mast cell patients suffer reactions that do not demonstrate an IgE pathway to their allergies and anaphylaxis, and it is reason most of us suffer for years before being diagnosed correctly.

The idea that anaphylaxis is a function directly executed by IgE is a deeply ingrained part of western medicine.  In this model, IgE specific for an allergen binds to the allergen, and binds to the IgE receptor on mast cells and basophils, resulting in massive degranulation.

This is the classic model of anaphylaxis, with some creative license:

  1. You come into contact with something. Let’s say it’s Peanut, an anthropomorphic peanut.
  2. Immune cells called B cells think they once saw Peanut in a dark alley behind a bar. Peanut could have been waiting for a ride like any responsible peanut who has been drinking, but dark alley = shady = Peanut is trouble.
  3. The B cells make “Wanted!” posters with a picture of the peanut on it. Many, many posters.
  4. The B cells make lots of IgE to make sure every cell in the body sees the Wanted! posters. There will be nowhere for peanuts to hide. (I swear that as I was typing, I just heard the theme to the Good, the Bad and the Ugly.  I SWEAR.)
  5. Everyone knows that Peanut is a bad guy. They have seen the poster many times.  They do not need to see it again.  Do not show the poster again.  WE KNOW PEANUT IS BAD, IGE.  GO HOME, IGE, YOU’RE DRUNK.
  6. You guys know what happens next.  Peanut shows up.
  7. Someone remembers that IgE has been coming around the bar with the poster of Peanut. Peanut = bad guy.
  8. Everyone is hoping that if they tell IgE where Peanut is that IgE will leave them alone. No one really likes IgE but he is making such a big deal about Peanut and maybe Peanut is bad.  A little bad.  No one really knows but they know they do NOT want to deal with IgE if Peanut gets away.
  9. IgE and Peanut have a Western style gun duel at high noon. IgE captures Peanut by binding to him.
  10. While IgE is bound to Peanut, he also binds to a mast cell, which is like home base. IgE knows that Peanut is trouble and he is part of a Peanut gang and they are all bad, too.
  11. Mast cells deploy the tanks, duckboats, submarines, helicopters and fighter planes in the early allergy response to fight the Peanut gang. This causes massive inflammation with effects throughout the whole body.  Mediators released in the early response include histamine and tryptase.
  12. Mast cells start building more defenses and release them a little at a time later on in the late allergy response. Mediators released in the late response include prostaglandins and leukotrienes.

But we all know that it doesn’t always happen like this, because mast cell patients often have normal tryptase and IgE despite having a massive anaphylactic event, or even normal histamine or prostaglandins.

Last month, a comprehensive paper described alternative anaphylaxis pathways in mice that may be analogous to what is happening to mast cell patients having anaphylaxis that is not mediated by IgE.  That is to say, this pathway needs more research to know for sure if it is what is happening to us, but I have been watching the literature on this closely for a while and I100% think this is real.

There have now been multiple reports of the ability to induce anaphylaxis in mice while interfering with the IgE allergy pathway (either by not making IgE or the IgE receptor, or by treating the mice with anti-IgE, which blocks the IgE from binding to the receptor). Scientists found that by anaphylaxis could be mediated by IgG if the trigger was given intravenously. In particular, they were able to identify the murine IgG2b as the antibody subclass responsible.  In mice, IgG2b can cause anaphylaxis when IgE is not able to participate, at all.

The most important mediator in IgE anaphylaxis is histamine.  But the most important mediator in IgG anaphylaxis is platelet activating factor (PAF).  PAF levels have been linked with severity of anaphylaxis previously (I wrote a post about this around this time last year).  This could explain why many patients have normal tryptase, n-methylhistamine or histamine levels despite a very short amount of time elapsed from anaphylaxis. This is not a histamine show.  And maybe the reason so many mast cell patients cannot get complete relief despite taking huge doses of antihistamines is because histamine isn’t the PRIMARY issue.  (Author’s note: Please do not stop taking your antihistamines.  I love my antihistamines.  Just saying I think maybe there is something happening above histamine in these reactions.)

It’s also not just a mast cell show.  IgG can activate basophils, monocytes and macrophages, and neutrophils to release PAF.  Human neutrophils can mediate IgG dependent anaphylaxis when infused into mice.  So now we have a mechanism for anaphylaxis that is not IgE independent – it can also be mast cell independent.  Mind blowing. (Worth mentioning here that the phenomenon of mast cell independent anaphylaxis is not new or specific to IgG anaphylaxis – groups have found instances of mast cell independent anaphylaxis for almost thirty years.)

PAF levels are much higher in anaphylaxis patients than in control patients, and the enzyme that degrades PAF, called PAF acetylhydrolase, is much lower. It is important to note that binding at the IgE receptor can also produce PAF, but that also causes degranulation and release of histamine and tryptase, which seems to be absent in some patients.

To induce IgG mediated anaphylaxis, you need more allergen than for IgE anaphylaxis.  A lot more. 100-1000x more.  So in mice that have both IgE and IgG for peanut (not really peanut), doesn’t it seem like the IgE would react first to the peanut, and you would have IgE anaphylaxis?  But that’s not what happens.  What happens is that the IgG scoops up the peanut faster than the IgE can.  The IgG can block IgE anaphylaxis.  (WHAT UP MAST CELL PATIENTS DOING WAY BETTER ON IVIG?!?!)

IgG anaphylaxis in mice has been exclusively isolated to triggers administered intravenously.  The reason this fact matters is because of the frequency with which people (who don’t always have mast cell disease) have anaphylaxis to intravenous antibody treats, like IVIG, monoclonal antibodies for treating various diseases, or transfusions (which contain IgG antibodies). Treatments of this kind provide a huge influx of allergen. This pathway favors IgG anaphylaxis over IgE anaphylaxis because of how the IgG will scoop the allergen up (see previous paragraph).

As a final aside, there is also the curious fact that a group of patients with CVID (common variable immunodeficiency, a primary immunodeficiency disease) have a mutation that makes one of the IgG receptors found on cells like mast cells WAY more active.  The CVID patients with this mutation also have antibodies to IgA and experience anaphylaxis after IVIG.

I know I have gone on and on but this is the most exciting thing to happen to tryptase and histamine normal anaphylaxis patients in the last decade, at least.  There is SO much work that needs to be done.  Mouse and human mast cells are different.  Mouse and human IgG antibodies are different.  They could not induce food allergy in mice with an IgG dependent mechanism.  We need to pursue research on the role of PAF specifically in anaphylaxis patients with normal tryptase and histamine.

But now, when you tell your doctor that anaphylaxis is not always IgE dependent, you can give them a reference to a solid paper that fairly describes the findings, the caveats and the strengths of the current research on IgE independent anaphylaxis.  And it’s not just speculation. PEOPLE OUTSIDE OF MAST CELL DISEASE RESEARCH GROUPS ACKNOWLEDGE THAT THIS IS REAL.  IGE INDEPENDENT ANAPHYLAXIS IS REAL.

Boom.

Someone hold my Epipens while I make my dog dance with me.

Reference:

Finkelman FD, Khodoun MV, Strait R. Human IgE-independent systemic anaphylaxis. J Allergy Clin Immunol 2016.

 

The Sex Series – Part Three: Allergic reactions of the vagina and vulva

Most of what I said about kissing applies to genitally penetrating intercourse, too.  It is not uncommon for people to develop hives as a result of the vibration, pressure, heat and friction of intercourse. Swelling after sex, called postcoital edema, is also not unusual.  Sex is also a known trigger for asthma and rhinitis.  Several aspects of sex, including the heat and emotion, can activate the autonomic nervous system and cause release of mast cell mediators.  Importantly, studies have revealed that the allergic effects of sex are not due to the physical exertion (ie. exercise anaphylaxis).

While local reactions are more common, there is precedent for sex causing multisystem allergic response or anaphylaxis.  The person receiving the vaginal penetration is more likely to have anaphylaxis following sex, especially if they are strongly sensitized to food or medications.  Seminal fluid can contain food or drug allergens.  Aspirin and penicillin derivatives have been reported to cause allergic reactions from sex, called postcoital hypersensitivity. Transfer of pollens from the clothes or skin of the partner can also cause allergic reactions.

One product we have not yet discussed that can cause contact dermatitis and anaphylaxis is condoms. 25% of reactions to latex condoms cause hives over large portions of the body, angioedema and respiratory symptoms. There are latex alternative condoms, but many patients react to those as well.

Vaginally penetrating intercourse often causes microscopic tearing, mostly due to inadequate lubrication.  As a former sex educator, if you think you are using enough lubrication, you are not.  It is my personal experience that water based lubricants are better tolerated by most allergy patients for vaginal intercourse.  Silicone lubricant is popular because it’s not absorbed by the body and is therefore slicker, whereas water based lubricant often requires reapplication.  But that’s okay.  That’s why you get a whole bottle.

Contributing to the insufficient lubrication is the fact that most people don’t engage in long enough foreplay.  Foreplay provides a number of benefits: it increases naturally secreted vaginal lubrication, increases blood flow to the vagina and tells the cervix to get out of the way. 20 minutes of foreplay is often recommended as a rule of thumb in order to get the vagina in order before penetrating intercourse.

Moisture, friction and heat can cause the vulvar skin to break down. Estrogen plays a large role in keeping this tissue strong and undamaged.  Urine on the skin can cause contact dermatitis.  Malnutrition and history of genital infections can also contribute towards the reactivity of the tissue. It is also possible to be IgE positive for Candida albicans, a yeast that lives normally in the vagina.  Inflammation can upset the balance of the normal flora, resulting not only in vaginal infections but a literal allergy to Candida.

References:

Schlosser BJ. Contact dermatitis of the vulva. Dermatol Clin 2010: 28; 697-706.

Moraes PSA, Taketomi EA. Allergic vulvovaginitis. Ann Allergy Asthma Immunol 2000; 85: 253-267.

Chen WW, Baskin M. A 33-year-old woman with burning and blistering of perivaginal tissue following sexual intercourse. Annals of Allergy, Asthma & Immunology 2004; 93: 126-130.

Harlow BL, He W, Nguyen RHN. Allergic reactions and risk of vulvodynia. Ann Epidemiol 2009; 19: 771-777.

Liccardi G, et al. Intimate behavior and allergy: a narrative review. Annals of Allergy, Asthma & Immunology 2007; 99: 394-400.

Sonnex C. Genital allergy. Sex Transm Infect 2004; 80: 4-7.

The Sex Series – Part One: Kissing and allergic reactions

The avenues by which a person can suffer symptoms as a result of sex are almost endless.  I am asked often about the mechanism by which mast cell patients can react to foreplay or intercourse. The reason it has taken so long to put this series together is not because of a dearth of information, but because there is so much.  The research on this topic is deep, if not always to the point: Why do some people react badly to having sex?

There are a number of reasons why sex can cause allergic symptoms, which explains why intimacy is often fraught with anxiety for mast cell patients.  So let’s start with the entry level: kissing.

It is widely accepted that kissing can transfer allergens via saliva, or contact between skin or oral mucosa.  Allergic reaction after kissing is not even especially unusual.  5-12% of IgE food allergic patients have had at least one reaction after kissing.  Peanuts, walnuts, and tree nuts are the most common offenders.  Rash around the mouth, hives around the mouth, flushing, angioedema of lips, mouth, tongue and throat, wheezing and hives all over the body have all been reported in this situation.  Usually symptoms present within minutes, but there are literature references to reactions developing up to three hours later.

In a group of 26 volunteers that ate peanut butter, the protein reached its highest concentration in saliva five minutes after consumption.  After an hour, the protein was undetectable.  Several methods for clearing the protein were tested.  Brushing teeth, rinsing mouth, or both, waiting an hour after consumption, and waiting an hour and then chewing gum, all reduced protein concentration by over 80%.  However, waiting one hour after eating was still the most effective way to clear the protein from the mouth.

Though much less common than transfer of food allergens, it is possible to transmit medications via saliva. In literature, all reports of this phenomenon involve ingestion of β-lactam antibiotics, including penicillin derivatives.  In these cases, the patients had symptoms of oral allergy syndrome with hives over large parts of the body.

The quality of the kissing is certainly a factor.  How deep is it?  How much hard? How much friction?  How wet?  Mast cell patients often react to physical stimuli like this.  It’s not hard to imagine a situation where the pressure and heat of kissing cause local mast cell degranulation.   I found a (non-scientific) article describing a woman with aquagenic urticaria who reacts to kissing because it’s wet.  For patients allergic to sweat, that could also cause a kissing reaction.

I feel like I should throw out there that you can react to allergens returned to the mouth by vomit.  Mostly because there isn’t really anywhere else to put it.  So it’s here.  The warning about vomit is in the kissing post.  How did this get to be my life?

BUT GUESS WHAT GUYS?!?!?!? Kissing can also be good for allergy patients.  One study reported that that kissing decreased wheal response (the formation of red swollen areas) was decreased 28-34% in patient allergic to dust mite and Japanese cedar pollen.  This patient group had allergic rhinitis and atopic dermatitis.  It didn’t decrease the response to injection of histamine, which means the benefit from kissing in this study is not directly blocking histamine.  Plasma levels of neurotrophins were decreased in these patients.  Neurotrophins have a complex relationship to mast cells, so it’s possible that neurotrophins block something that tells mast cells to release histamine.

I know everyone wants to know – how can I kiss safely? So hang in there, because it’s coming.  Along with the answers to all of the “embarrassing” sex questions I have ever been asked.

References:

Liccardi G, et al. Intimate behavior and allergy: a narrative review. Annals of Allergy, Asthma & Immunology 2007; 99: 394-400.

Maloney JM, et al. Peanut allergen exposure through saliva: assessment and interventions to reduce exposure. J Allergy Clin Immunol 2006; 118: 719-724.

Liccardi G, et al. Drug allergy transmitted by passionate kissing. Lancet 2002; 359: 1700.

Sonnex C. Genital allergy. Sex Transm Infect 2004; 80: 4-7.