The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 63

77. Can you have anaphylaxis with high blood pressure?

  • Yes.
  • The misconception that a person with high blood pressure cannot be experiencing anaphylaxis is enduring and dangerous.
  • Author’s note: Thanks to the intrepid reader who caught a big typo right here. When I published the post, it said, “The misconception that a person with high blood pressure can be experiencing anaphylaxis is enduring and dangerous.” This is a whopper mistake. It should say,  “The misconception that a person with high blood pressure canNOT be experiencing anaphylaxis is enduring and dangerous.” You CAN have high blood pressure and anaphylaxis at the same time. Thanks again!
  • Lots of providers (and patients) think that high blood pressure rules out anaphylaxis. This is not true.
  • This misunderstanding comes from confusing two closely related but distinct concepts: anaphylaxis and anaphylactic shock.
  • Anaphylaxis is a severe allergic reaction affecting multiple organ systems.
  • Anaphylactic shock is when anaphylaxis causes such poor blood circulation that the heart cannot pump out enough blood to the body.
  • Anaphylactic shock is a form of circulatory shock, which means exactly what I just described: oxygenated blood is not being pumped out of the heart and through the blood vessels to the tissues that need it.
  • Anaphylactic shock is defined as blood pressure 30% below the patient’s baseline or a systolic blood pressure below 90 mm Hg. The systolic blood pressure is the top number when you get your blood pressure checked. If that top number is below 90 mm Hg, and that is the result of anaphylaxis, you are in anaphylactic shock.
  • Anaphylactic shock is the most serious potential complication of anaphylaxis. Anaphylactic shock happens when the chemicals released by mast cells cause a lot of the fluid in the bloodstream to “fall out” of the bloodstream and get stuck in the tissues.
  • When this happens, that fluid loss causes the blood pressure to drop. In response, the heart beats faster to try and use the blood it still has left to get oxygen to the body. However, at a certain point, even beating really fast is not enough to get enough blood to the tissues. At this point, shock sets in.
  • Anaphylactic shock occurs specifically as a result of low blood pressure. Because of this, providers strongly associate low blood pressure with anaphylaxis. They may not realize that while a person with high blood pressure cannot be having anaphylactic shock, they can be having anaphylaxis.
  • Part of the confusion is that anaphylaxis has been defined lots of different ways by many different groups. I have written a very detailed post about this (see the link below). Even today, exactly what constitutes anaphylaxis not agreed upon by everybody.
  • The most widely used criteria in the US are the criteria published in 2006 by the World Allergy Organization journal. These criteria explicitly state that a person does not need to have low blood pressure to be having anaphylaxis. A person can meet these criteria based upon a variety of combinations of symptom and vital signs that do not include low blood pressure.

2006 WAO Anaphylaxis Criteria

For additional information, please visit the following posts:

The definition of anaphylaxis
Anaphylaxis and mast cell reactions

The MastAttack 107: The Layperson’s Guide to Understanding Mast Cell Diseases, Part 49

 

 

Symptoms, mediators and mechanisms: A general review (Part 1 of 2)

Skin symptoms    
Symptom Mediators Mechanism
Flushing Histamine (H1), PGD2 Increased vasodilation and permeability of blood vessels

Blood is closer to the skin and redness is seen

Itching Histamine (H1), leukotrienes LTC4, LTD4, LTE4, PAF Possibly stimulation of itch receptors or interaction with local neurotransmitters
Urticaria Histamine (H1), PAF, heparin, bradykinin Increased vasodilation and permeability of blood vessels and lymphatic vessels

Fluid is trapped inappropriately between layers of skin

Angioedema Histamine (H1), heparin, bradykinin, PAF Increased vasodilation and permeability of blood vessels and lymphatic vessels

Fluid is trapped inappropriately between layers of tissue

 

Respiratory symptoms    
Symptom Mediators Mechanism
Nasal congestion Histamine (H1), histamine (H2), leukotrienes LTC4, LTD4, LTE4 Increased mucus production

Smooth muscle constriction

Sneezing Histamine (H1), histamine (H2), leukotrienes LTC4, LTD4, LTE4 Increased mucus production

Smooth muscle constriction

Airway constriction/ difficulty breathing Histamine (H1), leukotrienes LTC4, LTD4, LTE4, PAF Increased mucus production

Smooth muscle constriction

 

Cardiovascular symptoms    
Symptom Mediators Mechanism
Low blood pressure Histamine (H1), PAF,  PGD2, bradykinin Decreased force of heart contraction

Increased vasodilation and permeability of blood vessels

Impact on norepinephrine signaling

Change in heart rate

Presyncope/syncope (fainting) Histamine (H1), histamine (H3), PAF, bradykinin Increased vasodilation and permeability of blood vessels

Decrease in blood pressure

Dysfunctional release of neurotransmitters

High blood pressure Chymase,  9a,11b-PGF2, renin, thromboxane A, carboxypeptidase A Impact on renin-angiotensin pathway

Impact on norepinephrine signaling

Tightening and decreased permeability of blood vessels

Tachycardia Histamine (H2), PGD2 Increasing heart rate

Increasing force of heart contraction

Impact on norepinephrine signaling

Arrhythmias Chymase, PAF, renin Impact on renin-angiotensin pathway

Impact on norepinephrine signaling

 

Gastrointestinal symptoms    
Symptom Mediators Mechanism
Diarrhea Histamine (H1), histamine (H2), bradykinin, serotonin Smooth muscle constriction

Increased gastric acid secretion

Dysfunctional release of neurotransmitters

Gas Histamine (H1), histamine (H2), bradykinin Smooth muscle constriction

Increased gastric acid secretion

Abdominal pain Histamine (H1), histamine (H2), bradykinin, serotonin Smooth muscle constriction

Increased gastric acid secretion

Dysfunctional release of neurotransmitters

Nausea/vomiting Histamine (H3), serotonin Dysfunctional release of neurotransmitters
Constipation Histamine (H2), histamine (H3), serotonin (low) Dysfunctional release of neurotransmitters

 

Cardiovascular manifestations of mast cell disease: Part 5 of 5

Low blood pressure causing lightheadedness or fainting is a classic manifestation of mast cell disease with as many as 22-55% of patients having experienced it at least one. For comparison, the control group demonstrated a frequency of 5%.  Some patients experience this symptom often while others only rarely experience it or never do.

A staggering amount of mast cell mediators can induce low blood pressure; indeed, this is the reason why low blood pressure is the hallmark sign of severe allergic reaction and anaphylaxis.  Histamine can induce hypotension through the H1 receptor.  Heparin makes histamine and tryptase less susceptible to degradation, allowing longer action.

Many mediators are vasodilating, widening the blood vessels. Vasoactive intestinal peptide (VIP) is a vasodilator.  PGD2 is also a very potent in this capacity. PGE2 is not released in large amounts by mast cells, but has the same effect. Platelet activating factor decreases blood pressure in multiple ways: by decreasing the force of heart muscle contraction, by slowing heart rate and by widening blood vessels. IL-6 and nitric oxide are also vasodilating.

Some mediators lower blood pressure by their participation in the bradykinin pathway.  Bradykinin is a potent stimulator of fluid loss from the blood to the tissues, causing low blood pressure and angioedema. Heparin can serve as an initiator for the production of bradykinin. Tryptase and chymase both participate in bradykinin formation.

Mast cell medications can be very effective in increasing blood pressure by decreasing fluid loss from the blood to the tissues.  As PGD2 can be a strong vasodilator, COX inhibitors like NSAIDs that interfere with prostaglandin production can help to increase blood pressure.  Aspirin, 81-325mg once or twice daily, is sometimes recommended for adults that are not sensitive to the medication.  Early data on the use of omalizumab (Xolair) in SM patients indicates that it may prevent episodes of sudden onset low blood pressure.

References:

Kolck UW, et al. Cardiovascular symptoms in patients with systemic mast cell activation disease. Translation Research 2016; x:1-10.

Gonzalez-de-Olano D, et al. Mast cell-related disorders presenting with Kounis Syndrome. International Journal of Cardiology 2012: 161(1): 56-58.

Kennedy S, et al. Mast cells and vascular diseases. Pharmacology & Therapeutics 2013; 138: 53-65.

 

Cardiovascular manifestations of mast cell disease: Part 3 of 5

Recurrent or perpetual elevation in blood pressure has been observed in multiple studies and may affect up to 31% of patients with mast cell activation disease (systemic mastocytosis, mast cell activation syndrome/disorder, monoclonal mast cell activation syndrome). Despite this high prevalence, many providers continue to believe that this symptom cannot be inherently from mast cell activation.

A number of mast cell mediators are vasoconstrictors, narrowing the blood vessels and elevating blood pressure. Histamine can both increase and lower blood pressure depending on which receptor it acts upon (H1: hypotension; H2: hypertension).

Several mediators participate in the angiotensin-renin pathway. Angiotensin II, the level of which is largely determined by mast cell mediators like renin, strongly elevates blood pressure. Chymase, involved in the angiotensin-renin pathway, can also either increase or lower blood pressure depending on concentration relative to other mediators present. Carboxypeptidase A can also affect angiotensin II level as well. Renin regulates the level of a molecule that becomes angiotensin II and can increase blood pressure this way.

Phospholipases, which help produce the molecule needed to make prostaglandins, leukotrienes and thromboxanes can contribute to either high or low blood pressure depending upon which molecule is made. Prostaglandin D2 (PGD2) is a vasodilator, lowering blood pressure; but its metabolite, 9a,11b-PGF2, increases blood pressure. (Author’s note: I personally believe this to be the reason for the rapid blood pressure fluctuations in mast cell patients, but do not have evidence to directly support this.) Thromboxane A2, a molecule related to prostaglandins and leukotrienes, increases blood pressure, as do leukotrienes.

Management of high blood pressure is complicated in mast cell patients by the interaction of common antihypertensives with mast cell activation. Beta blockers are contraindicated in mast cell patients because they interfere with epinephrine, both naturally produced and medicinally.  Use of beta blockers is a risk factor for fatal anaphylaxis.  Any patient on beta blockers that carries an epipen should also carry a glucagon pen, which can be administered prior to the epipen to increase efficacy.

ACE inhibitors interfere with angiotensin converting enzyme, which increases blood pressure through the angiotensin II pathway.  ACE inhibitors affect bradykinin levels, a mast cell mediator that is also mast cell activating.  For this reason, ACE inhibitors can increase mast cell reactivity and symptoms like angioedema.

Author’s note:  I extended this series to four posts to discuss heart failure in mast cell patients.  Following this series, I will be posting a series dedicated exclusively to Kounis Syndrome, including diagnosis and treatment.  Sit tight!

References:

Kolck UW, et al. Cardiovascular symptoms in patients with systemic mast cell activation disease. Translation Research 2016; x:1-10.

Gonzalez-de-Olano D, et al. Mast cell-related disorders presenting with Kounis Syndrome. International Journal of Cardiology 2012: 161(1): 56-58.

Kennedy S, et al. Mast cells and vascular diseases. Pharmacology & Therapeutics 2013; 138: 53-65.